Show the explosion of a hydrogen bomb. Destroy the world? Thermonuclear bomb: history and myths

Our article is devoted to the history of creation and general principles of synthesis of such a device, sometimes called hydrogen. Instead of releasing explosive energy by splitting the nuclei of heavy elements like uranium, it generates even more energy by fusing the nuclei of light elements (such as isotopes of hydrogen) into one heavy one (such as helium).

Why is nuclear fusion preferable?

During a thermonuclear reaction, which consists in the fusion of the nuclei of the chemical elements participating in it, significantly more energy is generated per unit mass of a physical device than in a pure atomic bomb that implements a nuclear fission reaction.

In an atomic bomb, fissile nuclear fuel quickly, under the influence of the energy of detonation of conventional explosives, combines in a small spherical volume, where its so-called critical mass is created, and the fission reaction begins. In this case, many neutrons released from fissile nuclei will cause the fission of other nuclei in the fuel mass, which also release additional neutrons, leading to a chain reaction. It covers no more than 20% of the fuel before the bomb explodes, or perhaps much less if conditions are not ideal: as in the atomic bombs Little Kid dropped on Hiroshima and Fat Man that hit Nagasaki, efficiency (if such a term can be applied to them) apply) were only 1.38% and 13%, respectively.

The fusion (or fusion) of nuclei covers the entire mass of the bomb charge and lasts as long as neutrons can find thermonuclear fuel that has not yet reacted. Therefore, the mass and explosive power of such a bomb are theoretically unlimited. Such a merger could theoretically continue indefinitely. Indeed, the thermonuclear bomb is one of the potential doomsday devices that could destroy all human life.

What is a nuclear fusion reaction?

The fuel for the thermonuclear fusion reaction is hydrogen isotopes deuterium or tritium. The first differs from ordinary hydrogen in that its nucleus, in addition to one proton, also contains a neutron, and the tritium nucleus already has two neutrons. In natural water, there is one deuterium atom for every 7,000 hydrogen atoms, but from its quantity. contained in a glass of water, as a result of a thermonuclear reaction, the same amount of heat can be obtained as from the combustion of 200 liters of gasoline. At a 1946 meeting with politicians, the father of the American hydrogen bomb, Edward Teller, emphasized that deuterium provides more energy per gram of weight than uranium or plutonium, but costs twenty cents per gram compared with several hundred dollars per gram of fission fuel. Tritium does not occur in nature in a free state at all, so it is much more expensive than deuterium, with a market price of tens of thousands of dollars per gram, but the greatest amount of energy is released precisely in the fusion reaction of deuterium and tritium nuclei, in which the nucleus of a helium atom is formed and released neutron carrying away excess energy of 17.59 MeV

D + T → 4 He + n + 17.59 MeV.

This reaction is shown schematically in the figure below.

Is it a lot or a little? As you know, everything is learned by comparison. So, the energy of 1 MeV is approximately 2.3 million times more than that released during the combustion of 1 kg of oil. Consequently, the fusion of only two nuclei of deuterium and tritium releases as much energy as is released during the combustion of 2.3∙10 6 ∙17.59 = 40.5∙10 6 kg of oil. But we are talking about only two atoms. You can imagine how high the stakes were in the second half of the 40s of the last century, when work began in the USA and the USSR, which resulted in a thermonuclear bomb.

How it all began

As early as the summer of 1942, at the beginning of the atomic bomb project in the United States (the Manhattan Project) and later in a similar Soviet program, long before a bomb based on the fission of uranium nuclei was built, the attention of some participants in these programs was drawn to the device, which can use a much more powerful nuclear fusion reaction. In the USA, a supporter of this approach, and even, one might say, its apologist, was the above-mentioned Edward Teller. In the USSR, this direction was developed by Andrei Sakharov, a future academician and dissident.

For Teller, his fascination with thermonuclear fusion during the years of creating the atomic bomb was rather a disservice. As a participant in the Manhattan Project, he persistently called for the redirection of funds to implement his own ideas, the goal of which was a hydrogen and thermonuclear bomb, which did not please the leadership and caused tension in relations. Since at that time the thermonuclear direction of research was not supported, after the creation of the atomic bomb Teller left the project and began teaching, as well as researching elementary particles.

However, the outbreak of the Cold War, and most of all the creation and successful testing of the Soviet atomic bomb in 1949, became a new chance for the ardent anti-communist Teller to realize his scientific ideas. He returns to the Los Alamos laboratory, where the atomic bomb was created, and, together with Stanislav Ulam and Cornelius Everett, begins calculations.

The principle of a thermonuclear bomb

In order for the nuclear fusion reaction to begin, the bomb charge must be instantly heated to a temperature of 50 million degrees. The thermonuclear bomb scheme proposed by Teller uses for this purpose the explosion of a small atomic bomb, which is located inside the hydrogen casing. It can be argued that there were three generations in the development of her project in the 40s of the last century:

  • Teller's variation, known as the "classic super";
  • more complex, but also more realistic designs of several concentric spheres;
  • the final version of the Teller-Ulam design, which is the basis of all thermonuclear weapon systems operating today.

The thermonuclear bombs of the USSR, whose creation was pioneered by Andrei Sakharov, went through similar design stages. He, apparently, completely independently and independently of the Americans (which cannot be said about the Soviet atomic bomb, created by the joint efforts of scientists and intelligence officers working in the USA) went through all of the above design stages.

The first two generations had the property that they had a succession of interlocking "layers", each of which reinforced some aspect of the previous one, and in some cases feedback was established. There was no clear division between the primary atomic bomb and the secondary thermonuclear one. In contrast, the Teller-Ulam thermonuclear bomb diagram sharply distinguishes between a primary explosion, a secondary explosion, and, if necessary, an additional one.

The device of a thermonuclear bomb according to the Teller-Ulam principle

Many of its details still remain classified, but it is reasonably certain that all thermonuclear weapons currently available are based on the device created by Edward Telleros and Stanislaw Ulam, in which an atomic bomb (i.e. the primary charge) is used to generate radiation, compresses and heats fusion fuel. Andrei Sakharov in the Soviet Union apparently independently came up with a similar concept, which he called the "third idea."

The structure of a thermonuclear bomb in this version is shown schematically in the figure below.

It was cylindrical in shape, with a roughly spherical primary atomic bomb at one end. The secondary thermonuclear charge in the first, not yet industrial samples, was made of liquid deuterium; somewhat later it became solid from a chemical compound called lithium deuteride.

The fact is that industry has long used lithium hydride LiH for balloon-free hydrogen transportation. The developers of the bomb (this idea was first used in the USSR) simply proposed taking its isotope deuterium instead of ordinary hydrogen and combining it with lithium, since it is much easier to make a bomb with a solid thermonuclear charge.

The shape of the secondary charge was a cylinder placed in a container with a lead (or uranium) shell. Between the charges there is a neutron protection shield. The space between the walls of the container with thermonuclear fuel and the bomb body is filled with special plastic, usually polystyrene foam. The bomb body itself is made of steel or aluminum.

These shapes have changed in recent designs such as the one shown below.

In it, the primary charge is flattened, like a watermelon or an American football ball, and the secondary charge is spherical. Such shapes fit much more efficiently into the internal volume of conical missile warheads.

Thermonuclear explosion sequence

When a primary atomic bomb detonates, in the first moments of this process a powerful X-ray radiation (neutron flux) is generated, which is partially blocked by the neutron shield, and is reflected from the inner lining of the housing surrounding the secondary charge, so that the X-rays fall symmetrically across its entire length

During the initial stages of a thermonuclear reaction, neutrons from an atomic explosion are absorbed by a plastic filler to prevent the fuel from heating up too quickly.

X-rays initially cause the appearance of a dense plastic foam that fills the space between the housing and the secondary charge, which quickly turns into a plasma state that heats and compresses the secondary charge.

In addition, the X-rays evaporate the surface of the container surrounding the secondary charge. The substance of the container, evaporating symmetrically relative to this charge, acquires a certain impulse directed from its axis, and the layers of the secondary charge, according to the law of conservation of momentum, receive an impulse directed towards the axis of the device. The principle here is the same as in a rocket, only if you imagine that the rocket fuel scatters symmetrically from its axis, and the body is compressed inward.

As a result of such compression of thermonuclear fuel, its volume decreases thousands of times, and the temperature reaches the level at which the nuclear fusion reaction begins. A thermonuclear bomb explodes. The reaction is accompanied by the formation of tritium nuclei, which merge with deuterium nuclei initially present in the secondary charge.

The first secondary charges were built around a rod core of plutonium, informally called a "candle", which entered into a nuclear fission reaction, i.e., another, additional atomic explosion was carried out in order to further raise the temperature to ensure the start of the nuclear fusion reaction. It is now believed that more efficient compression systems have eliminated the "candle", allowing further miniaturization of bomb design.

Operation Ivy

This was the name given to the tests of American thermonuclear weapons in the Marshall Islands in 1952, during which the first thermonuclear bomb was detonated. It was called Ivy Mike and was built according to the Teller-Ulam standard design. Its secondary thermonuclear charge was placed in a cylindrical container, which was a thermally insulated Dewar flask with thermonuclear fuel in the form of liquid deuterium, along the axis of which a “candle” of 239-plutonium ran. The dewar, in turn, was covered with a layer of 238-uranium weighing more than 5 metric tons, which evaporated during the explosion, providing symmetrical compression of the thermonuclear fuel. The container containing the primary and secondary charges was housed in a steel casing 80 inches wide by 244 inches long with walls 10 to 12 inches thick, the largest example of wrought iron up to that time. The inner surface of the case was lined with sheets of lead and polyethylene to reflect radiation after the explosion of the primary charge and create plasma that heats the secondary charge. The entire device weighed 82 tons. A view of the device shortly before the explosion is shown in the photo below.

The first test of a thermonuclear bomb took place on October 31, 1952. The power of the explosion was 10.4 megatons. Attol Eniwetok, where it was produced, was completely destroyed. The moment of the explosion is shown in the photo below.

The USSR gives a symmetrical answer

The US thermonuclear championship did not last long. On August 12, 1953, the first Soviet thermonuclear bomb RDS-6, developed under the leadership of Andrei Sakharov and Yuli Khariton, was tested at the Semipalatinsk test site. From the description above, it becomes clear that the Americans at Enewetok did not explode the bomb itself, as a type of ready-to-use ammunition, but rather a laboratory device, cumbersome and very imperfect. Soviet scientists, despite the small power of only 400 kg, tested a completely finished ammunition with thermonuclear fuel in the form of solid lithium deuteride, and not liquid deuterium, like the Americans. By the way, it should be noted that only the 6 Li isotope is used in lithium deuteride (this is due to the peculiarities of thermonuclear reactions), and in nature it is mixed with the 7 Li isotope. Therefore, special production facilities were built to separate lithium isotopes and select only 6 Li.

Reaching Power Limit

What followed was a decade of continuous arms race, during which the power of thermonuclear munitions continually increased. Finally, on October 30, 1961, in the USSR over the Novaya Zemlya test site in the air at an altitude of about 4 km, the most powerful thermonuclear bomb that had ever been built and tested, known in the West as the “Tsar Bomba,” was exploded.

This three-stage munition was actually developed as a 101.5-megaton bomb, but the desire to reduce radioactive contamination of the area forced the developers to abandon the third stage with a yield of 50 megatons and reduce the design yield of the device to 51.5 megatons. At the same time, the power of the explosion of the primary atomic charge was 1.5 megatons, and the second thermonuclear stage was supposed to give another 50. The actual power of the explosion was up to 58 megatons. The appearance of the bomb is shown in the photo below.

Its consequences were impressive. Despite the very significant height of the explosion of 4000 m, the incredibly bright fireball with its lower edge almost reached the Earth, and with its upper edge it rose to a height of more than 4.5 km. The pressure below the burst point was six times higher than the peak pressure of the Hiroshima explosion. The flash of light was so bright that it was visible at a distance of 1000 kilometers, despite the cloudy weather. One of the test participants saw a bright flash through dark glasses and felt the effects of the thermal pulse even at a distance of 270 km. A photo of the moment of the explosion is shown below.

It was shown that the power of a thermonuclear charge really has no limitations. After all, it was enough to complete the third stage, and the calculated power would be achieved. But it is possible to increase the number of stages further, since the weight of the Tsar Bomba was no more than 27 tons. The appearance of this device is shown in the photo below.

After these tests, it became clear to many politicians and military men in both the USSR and the USA that the nuclear arms race had reached its limit and needed to be stopped.

Modern Russia inherited the nuclear arsenal of the USSR. Today, Russia's thermonuclear bombs continue to serve as a deterrent to those seeking global hegemony. Let's hope they only play their role as a deterrent and never get blown up.

The sun as a fusion reactor

It is well known that the temperature of the Sun, or more precisely its core, reaching 15,000,000 °K, is maintained due to the continuous occurrence of thermonuclear reactions. However, everything that we could glean from the previous text speaks of the explosive nature of such processes. Then why doesn't the Sun explode like a thermonuclear bomb?

The fact is that with a huge share of hydrogen in the solar mass, which reaches 71%, the share of its isotope deuterium, the nuclei of which can only participate in the thermonuclear fusion reaction, is negligible. The fact is that deuterium nuclei themselves are formed as a result of the merger of two hydrogen nuclei, and not just a merger, but with the decay of one of the protons into a neutron, positron and neutrino (so-called beta decay), which is a rare event. In this case, the resulting deuterium nuclei are distributed fairly evenly throughout the volume of the solar core. Therefore, with its enormous size and mass, individual and rare centers of thermonuclear reactions of relatively low power are, as it were, smeared throughout its entire core of the Sun. The heat released during these reactions is clearly not enough to instantly burn out all the deuterium in the Sun, but it is enough to heat it to a temperature that ensures life on Earth.

The content of the article

H-BOMB, a weapon of great destructive power (on the order of megatons in TNT equivalent), the operating principle of which is based on the reaction of thermonuclear fusion of light nuclei. The source of explosion energy is processes similar to those occurring on the Sun and other stars.

Thermonuclear reactions.

The interior of the Sun contains a gigantic amount of hydrogen, which is in a state of ultra-high compression at a temperature of approx. 15,000,000 K. At such high temperatures and plasma densities, hydrogen nuclei experience constant collisions with each other, some of which result in their fusion and ultimately the formation of heavier helium nuclei. Such reactions, called thermonuclear fusion, are accompanied by the release of enormous amounts of energy. According to the laws of physics, the energy release during thermonuclear fusion is due to the fact that during the formation of a heavier nucleus, part of the mass of the light nuclei included in its composition is converted into a colossal amount of energy. That is why the Sun, having a gigantic mass, loses approx. every day in the process of thermonuclear fusion. 100 billion tons of matter and releases energy, thanks to which life on Earth became possible.

Isotopes of hydrogen.

The hydrogen atom is the simplest of all existing atoms. It consists of one proton, which is its nucleus, around which a single electron rotates. Careful studies of water (H 2 O) have shown that it contains negligible amounts of “heavy” water containing the “heavy isotope” of hydrogen - deuterium (2 H). The deuterium nucleus consists of a proton and a neutron - a neutral particle with a mass close to a proton.

There is a third isotope of hydrogen, tritium, whose nucleus contains one proton and two neutrons. Tritium is unstable and undergoes spontaneous radioactive decay, turning into an isotope of helium. Traces of tritium have been found in the Earth's atmosphere, where it is formed as a result of the interaction of cosmic rays with gas molecules that make up the air. Tritium is produced artificially in a nuclear reactor by irradiating the lithium-6 isotope with a stream of neutrons.

Development of the hydrogen bomb.

Preliminary theoretical analysis has shown that thermonuclear fusion is most easily accomplished in a mixture of deuterium and tritium. Taking this as a basis, US scientists at the beginning of 1950 began implementing a project to create a hydrogen bomb (HB). The first tests of a model nuclear device were carried out at the Enewetak test site in the spring of 1951; thermonuclear fusion was only partial. Significant success was achieved on November 1, 1951 during the testing of a massive nuclear device, the explosion power of which was 4 × 8 Mt in TNT equivalent.

The first hydrogen aerial bomb was detonated in the USSR on August 12, 1953, and on March 1, 1954, the Americans detonated a more powerful (approximately 15 Mt) aerial bomb on Bikini Atoll. Since then, both powers have carried out explosions of advanced megaton weapons.

The explosion at Bikini Atoll was accompanied by the release of large amounts of radioactive substances. Some of them fell hundreds of kilometers from the explosion site on the Japanese fishing vessel "Lucky Dragon", while others covered the island of Rongelap. Since thermonuclear fusion produces stable helium, the radioactivity from the explosion of a pure hydrogen bomb should be no more than that of an atomic detonator of a thermonuclear reaction. However, in the case under consideration, the predicted and actual radioactive fallout differed significantly in quantity and composition.

The mechanism of action of the hydrogen bomb.

The sequence of processes occurring during the explosion of a hydrogen bomb can be represented as follows. First, the thermonuclear reaction initiator charge (a small atomic bomb) located inside the HB shell explodes, resulting in a neutron flash and creating the high temperature necessary to initiate thermonuclear fusion. Neutrons bombard an insert made of lithium deuteride, a compound of deuterium and lithium (a lithium isotope with mass number 6 is used). Lithium-6 is split into helium and tritium under the influence of neutrons. Thus, the atomic fuse creates the materials necessary for synthesis directly in the actual bomb itself.

Then a thermonuclear reaction begins in a mixture of deuterium and tritium, the temperature inside the bomb rapidly increases, involving more and more hydrogen in the synthesis. With a further increase in temperature, a reaction between deuterium nuclei, characteristic of a pure hydrogen bomb, could begin. All reactions, of course, occur so quickly that they are perceived as instantaneous.

Fission, fusion, fission (superbomb).

In fact, in a bomb, the sequence of processes described above ends at the stage of the reaction of deuterium with tritium. Further, the bomb designers chose not to use nuclear fusion, but nuclear fission. The fusion of deuterium and tritium nuclei produces helium and fast neutrons, the energy of which is high enough to cause nuclear fission of uranium-238 (the main isotope of uranium, much cheaper than the uranium-235 used in conventional atomic bombs). Fast neutrons split the atoms of the uranium shell of the superbomb. The fission of one ton of uranium creates energy equivalent to 18 Mt. Energy goes not only to explosion and heat generation. Each uranium nucleus splits into two highly radioactive “fragments.” Fission products include 36 different chemical elements and nearly 200 radioactive isotopes. All this constitutes the radioactive fallout that accompanies superbomb explosions.

Thanks to the unique design and the described mechanism of action, weapons of this type can be made as powerful as desired. It is much cheaper than atomic bombs of the same power.

Consequences of the explosion.

Shock wave and thermal effect.

The direct (primary) impact of a superbomb explosion is threefold. The most obvious direct impact is a shock wave of enormous intensity. The strength of its impact, depending on the power of the bomb, the height of the explosion above the surface of the earth and the nature of the terrain, decreases with distance from the epicenter of the explosion. The thermal impact of an explosion is determined by the same factors, but also depends on the transparency of the air - fog sharply reduces the distance at which a thermal flash can cause serious burns.

According to calculations, during an explosion in the atmosphere of a 20-megaton bomb, people will remain alive in 50% of cases if they 1) take refuge in an underground reinforced concrete shelter at a distance of approximately 8 km from the epicenter of the explosion (E), 2) are in ordinary urban buildings at a distance of approx. . 15 km from EV, 3) found themselves in an open place at a distance of approx. 20 km from EV. In conditions of poor visibility and at a distance of at least 25 km, if the atmosphere is clear, for people in open areas, the likelihood of survival increases rapidly with distance from the epicenter; at a distance of 32 km its calculated value is more than 90%. The area over which the penetrating radiation generated during an explosion causes death is relatively small, even in the case of a high-power superbomb.

Fire ball.

Depending on the composition and mass of flammable material involved in the fireball, gigantic self-sustaining firestorms can form and rage for many hours. However, the most dangerous (albeit secondary) consequence of the explosion is radioactive contamination of the environment.

Fallout.

How they are formed.

When a bomb explodes, the resulting fireball is filled with a huge amount of radioactive particles. Typically, these particles are so small that once they reach the upper atmosphere, they can remain there for a long time. But if a fireball comes into contact with the surface of the Earth, it turns everything on it into hot dust and ash and draws them into a fiery tornado. In a whirlwind of flame, they mix and bind with radioactive particles. Radioactive dust, except the largest, does not settle immediately. Finer dust is carried away by the resulting cloud and gradually falls out as it moves with the wind. Directly at the site of the explosion, radioactive fallout can be extremely intense - mainly large dust settling on the ground. Hundreds of kilometers from the explosion site and at greater distances, small but still visible particles of ash fall to the ground. They often form a cover similar to fallen snow, deadly to anyone who happens to be nearby. Even smaller and invisible particles, before they settle on the ground, can wander in the atmosphere for months and even years, circling the globe many times. By the time they fall out, their radioactivity is significantly weakened. The most dangerous radiation remains strontium-90 with a half-life of 28 years. Its loss is clearly observed throughout the world. When it settles on leaves and grass, it enters food chains that include humans. As a consequence of this, noticeable, although not yet dangerous, amounts of strontium-90 have been found in the bones of residents of most countries. The accumulation of strontium-90 in human bones is very dangerous in the long term, as it leads to the formation of malignant bone tumors.

Long-term contamination of the area with radioactive fallout.

In the event of hostilities, the use of a hydrogen bomb will lead to immediate radioactive contamination of an area within a radius of approx. 100 km from the epicenter of the explosion. If a superbomb explodes, an area of ​​tens of thousands of square kilometers will be contaminated. Such a huge area of ​​destruction with a single bomb makes it a completely new type of weapon. Even if the superbomb does not hit the target, i.e. will not hit the object with shock-thermal effects, the penetrating radiation and radioactive fallout accompanying the explosion will make the surrounding space uninhabitable. Such precipitation can continue for many days, weeks and even months. Depending on their quantity, the intensity of radiation can reach deadly levels. A relatively small number of superbombs is enough to completely cover a large country with a layer of radioactive dust that is deadly to all living things. Thus, the creation of the superbomb marked the beginning of an era when it became possible to make entire continents uninhabitable. Even long after the cessation of direct exposure to radioactive fallout, the danger due to the high radiotoxicity of isotopes such as strontium-90 will remain. With food grown on soils contaminated with this isotope, radioactivity will enter the human body.

Atomic energy is released not only during the fission of atomic nuclei of heavy elements, but also during the combination (synthesis) of light nuclei into heavier ones.

For example, the nuclei of hydrogen atoms combine to form the nuclei of helium atoms, and more energy is released per unit weight of nuclear fuel than when uranium nuclei fission.

These nuclear fusion reactions, occurring at very high temperatures, measured in tens of millions of degrees, are called thermonuclear reactions. Weapons based on the use of energy instantly released as a result of a thermonuclear reaction are called thermonuclear weapons.

Thermonuclear weapons, which use hydrogen isotopes as a charge (nuclear explosive), are often called hydrogen weapons.

The fusion reaction between hydrogen isotopes - deuterium and tritium - is particularly successful.

Lithium deuterium (a compound of deuterium and lithium) can also be used as a charge for a hydrogen bomb.

Deuterium, or heavy hydrogen, occurs naturally in trace amounts in heavy water. Ordinary water contains about 0.02% heavy water as an impurity. To obtain 1 kg of deuterium, it is necessary to process at least 25 tons of water.

Tritium, or superheavy hydrogen, is practically never found in nature. It is obtained artificially, for example, by irradiating lithium with neutrons. Neutrons released in nuclear reactors can be used for this purpose.

Practically device hydrogen bomb can be imagined as follows: next to a hydrogen charge containing heavy and superheavy hydrogen (i.e., deuterium and tritium), there are two hemispheres of uranium or plutonium (atomic charge) located at a distance from each other.

To bring these hemispheres closer together, charges made from conventional explosives (TNT) are used. Exploding simultaneously, the TNT charges bring the hemispheres of the atomic charge closer together. At the moment of their connection, an explosion occurs, thereby creating conditions for a thermonuclear reaction, and consequently, an explosion of the hydrogen charge will occur. Thus, the reaction of a hydrogen bomb explosion goes through two phases: the first phase is the fission of uranium or plutonium, the second is the fusion phase, during which helium nuclei and free high-energy neutrons are formed. Currently, there are schemes for constructing a three-phase thermonuclear bomb.

In a three-phase bomb, the shell is made of uranium-238 (natural uranium). In this case, the reaction goes through three phases: the first fission phase (uranium or plutonium for detonation), the second is the thermonuclear reaction in lithium hydrite, and the third phase is the fission reaction of uranium-238. The fission of uranium nuclei is caused by neutrons, which are released in the form of a powerful stream during the fusion reaction.

Making a shell from uranium-238 makes it possible to increase the power of a bomb using the most accessible atomic raw materials. According to foreign press reports, bombs with a yield of 10-14 million tons or more have already been tested. It becomes obvious that this is not the limit. Further improvement of nuclear weapons is carried out both through the creation of especially high-power bombs and through the development of new designs that make it possible to reduce the weight and caliber of bombs. In particular, they are working on creating a bomb based entirely on fusion. There are, for example, reports in the foreign press about the possibility of using a new method of detonating thermonuclear bombs based on the use of shock waves of conventional explosives.

The energy released by the explosion of a hydrogen bomb can be thousands of times greater than the energy of an atomic bomb explosion. However, the radius of destruction cannot be as many times greater than the radius of destruction caused by the explosion of an atomic bomb.

The radius of action of a shock wave during an air explosion of a hydrogen bomb with a TNT equivalent of 10 million tons is approximately 8 times greater than the radius of action of a shock wave formed during the explosion of an atomic bomb with a TNT equivalent of 20,000 tons, while the power of the bomb is 500 times greater, tons . i.e. by the cubic root of 500. Accordingly, the destruction area increases by approximately 64 times, i.e., in proportion to the cubic root of the coefficient of increase in the power of the bomb squared.

According to foreign authors, with a nuclear explosion with a capacity of 20 million tons, the area of ​​complete destruction of ordinary ground-based structures, according to American experts, can reach 200 km 2, the zone of significant destruction - 500 km 2 and partial - up to 2580 km 2.

This means, foreign experts conclude, that the explosion of one bomb of similar power is enough to destroy a modern large city. As you know, the occupied area of ​​Paris is 104 km2, London - 300 km2, Chicago - 550 km2, Berlin - 880 km2.

The scale of damage and destruction from a nuclear explosion with a capacity of 20 million tons can be presented schematically in the following form:

The area of ​​lethal doses of initial radiation within a radius of up to 8 km (over an area of ​​up to 200 km 2);

Area of ​​damage by light radiation (burns)] within a radius of up to 32 km (over an area of ​​about 3000 km 2).

Damage to residential buildings (glasses broken, plaster crumbling, etc.) can be observed even at a distance of up to 120 km from the explosion site.

The given data from open foreign sources are indicative; they were obtained during testing of lower-yield nuclear weapons and through calculations. Deviations from these data in one direction or another will depend on various factors, and primarily on the terrain, the nature of the development, meteorological conditions, vegetation cover, etc.

The damage radius can be changed to a large extent by artificially creating certain conditions that reduce the effect of the damaging factors of the explosion. For example, it is possible to reduce the damaging effect of light radiation, reduce the area where burns can occur on people and objects can ignite, by creating a smoke screen.

Experiments carried out in the USA to create smoke screens for nuclear explosions in 1954-1955. showed that with a curtain density (oil mists) obtained with a consumption of 440-620 liters of oil per 1 km 2, the impact of light radiation from a nuclear explosion, depending on the distance to the epicenter, can be weakened by 65-90%.

Other smokes also weaken the damaging effects of light radiation, which are not only not inferior, but in some cases superior to oil fogs. In particular, industrial smoke, which reduces atmospheric visibility, can reduce the effects of light radiation to the same extent as oil mists.

It is much possible to reduce the damaging effect of nuclear explosions through the dispersed construction of settlements, the creation of forest areas, etc.

Of particular note is the sharp decrease in the radius of destruction of people depending on the use of certain protective equipment. It is known, for example, that even at a relatively small distance from the epicenter of the explosion, a reliable shelter from the effects of light radiation and penetrating radiation is a shelter with a layer of earthen covering 1.6 m thick or a layer of concrete 1 m thick.

A light-type shelter reduces the radius of the affected area by six times compared to an open location, and the affected area is reduced by tens of times. When using covered slots, the radius of possible damage is reduced by 2 times.

Consequently, with the maximum use of all available methods and means of protection, it is possible to achieve a significant reduction in the impact of the damaging factors of nuclear weapons and thereby reduce human and material losses during their use.

Speaking about the scale of destruction that can be caused by explosions of high-power nuclear weapons, it is necessary to keep in mind that damage will be caused not only by the action of a shock wave, light radiation and penetrating radiation, but also by the action of radioactive substances falling along the path of movement of the cloud formed during the explosion , which includes not only gaseous explosion products, but also solid particles of various sizes, both in weight and size. Especially large amounts of radioactive dust are generated during ground explosions.

The height of the cloud and its size largely depend on the power of the explosion. According to foreign press reports, during tests of nuclear charges with a capacity of several million tons of TNT, which were carried out by the United States in the Pacific Ocean in 1952-1954, the top of the cloud reached a height of 30-40 km.

In the first minutes after the explosion, the cloud has the shape of a ball and over time it stretches in the direction of the wind, reaching a huge size (about 60-70 km).

About an hour after the explosion of a bomb with a TNT equivalent of 20 thousand tons, the volume of the cloud reaches 300 km 3, and with the explosion of a bomb of 20 million tons, the volume can reach 10 thousand km 3.

Moving in the direction of the flow of air masses, an atomic cloud can occupy a strip several tens of kilometers long.

From the cloud, as it moves, after rising to the upper layers of the rarefied atmosphere, within a few minutes radioactive dust begins to fall to the ground, contaminating an area of ​​several thousand square kilometers along the way.

At first, the heaviest dust particles fall out, which have time to settle within a few hours. The bulk of coarse dust falls in the first 6-8 hours after the explosion.

About 50% of the particles (the largest) of radioactive dust fall out during the first 8 hours after the explosion. This loss is often called local in contrast to general, widespread.

Smaller dust particles remain in the air at various altitudes and fall to the ground for about two weeks after the explosion. During this time, the cloud can circle the globe several times, capturing a wide strip parallel to the latitude at which the explosion took place.

Small particles (up to 1 micron) remain in the upper layers of the atmosphere, distributed more evenly around the globe, and fall out over the next number of years. According to scientists, the fallout of fine radioactive dust has continued everywhere for about ten years.

The greatest danger to the population is radioactive dust falling in the first hours after the explosion, since the level of radioactive contamination is so high that it can cause fatal injuries to people and animals who find themselves in the area along the path of the radioactive cloud.

The size of the area and the degree of contamination of the area as a result of the fall of radioactive dust largely depend on meteorological conditions, terrain, height of the explosion, the size of the bomb charge, the nature of the soil, etc. The most important factor determining the size of the contamination area and its configuration is the direction and the strength of the winds prevailing in the area of ​​the explosion at various altitudes.

To determine the possible direction of cloud movement, it is necessary to know in which direction and at what speed the wind is blowing at various altitudes, starting from a height of about 1 km and ending at 25-30 km. To do this, the weather service must conduct continuous observations and measurements of wind using radiosondes at various altitudes; Based on the data obtained, determine in which direction the radioactive cloud is most likely to move.

During the explosion of a hydrogen bomb carried out by the United States in 1954 in the central Pacific Ocean (on Bikini Atoll), the contaminated area of ​​the territory had the shape of an elongated ellipse, which extended 350 km downwind and 30 km against the wind. The greatest width of the strip was about 65 km. The total area of ​​dangerous contamination reached about 8 thousand km 2.

As is known, as a result of this explosion, the Japanese fishing vessel Fukuryumaru, which was at that time at a distance of about 145 km, was contaminated with radioactive dust. The 23 fishermen on board the ship were injured, one of them fatally.

The radioactive dust that fell after the explosion on March 1, 1954 also exposed 29 American employees and 239 residents of the Marshall Islands, all of whom were injured at a distance of more than 300 km from the explosion site. Other ships located in the Pacific Ocean at a distance of up to 1,500 km from Bikini, and some fish near the Japanese coast also turned out to be infected.

The contamination of the atmosphere with explosion products was indicated by the rains that fell in May on the Pacific coast and Japan, in which greatly increased radioactivity was detected. The areas where radioactive fallout occurred during May 1954 cover about a third of Japan's entire territory.

The above data on the scale of damage that can be inflicted on the population by the explosion of large-caliber atomic bombs show that high-power nuclear charges (millions of tons of TNT) can be considered radiological weapons, i.e. weapons that damage more with the radioactive products of the explosion than with the impact wave, light radiation and penetrating radiation acting at the moment of explosion.

Therefore, in the course of preparing populated areas and national economic facilities for civil defense, it is necessary to provide everywhere for measures to protect the population, animals, food, fodder and water from contamination by the products of the explosion of nuclear charges, which may fall along the path of the radioactive cloud.

It should be borne in mind that as a result of the fallout of radioactive substances, not only the surface of the soil and objects will be contaminated, but also the air, vegetation, water in open reservoirs, etc. The air will be contaminated both during the period of deposition of radioactive particles and in the future, especially along roads during traffic or in windy weather, when settled dust particles will again rise into the air.

Consequently, unprotected people and animals may be affected by radioactive dust that enters the respiratory system along with the air.

Food and water contaminated with radioactive dust, which, if entering the body, can cause serious illness, sometimes fatal, will also be dangerous. Thus, in the area where radioactive substances formed during a nuclear explosion fall out, people will be exposed not only to external radiation, but also when contaminated food, water or air enters the body. When organizing protection against damage from the products of a nuclear explosion, it should be taken into account that the degree of contamination along the trail of the movement of the cloud decreases with distance from the explosion site.

Therefore, the danger to which the population located in the area of ​​the contamination zone is exposed is not the same at different distances from the explosion site. The most dangerous areas will be the areas close to the explosion site and areas located along the axis of the cloud movement (the middle part of the strip along the trail of the cloud movement).

The unevenness of radioactive contamination along the path of cloud movement is to a certain extent natural. This circumstance must be taken into account when organizing and conducting measures for radiation protection of the population.

It is also necessary to take into account that some time passes from the moment of explosion to the moment radioactive substances fall out of the cloud. This time increases the further you are from the explosion site, and can amount to several hours. The population of areas remote from the explosion site will have sufficient time to take appropriate protective measures.

In particular, provided that warning means are prepared in a timely manner and the relevant civil defense units work efficiently, the population can be notified of the danger in about 2-3 hours.

During this time, with advance preparation of the population and high level of organization, a number of measures can be carried out to provide fairly reliable protection against radioactive damage to people and animals. The choice of certain measures and methods of protection will be determined by the specific conditions of the current situation. However, general principles must be defined and civil defense plans developed in advance according to this.

It can be considered that, under certain conditions, the most rational should be the adoption, first of all, of protective measures on the spot, using all means and. methods that protect both from the entry of radioactive substances into the body and from external radiation.

As is known, the most effective means of protection from external radiation are shelters (adapted to meet the requirements of nuclear protection, as well as buildings with massive walls, built from dense materials (brick, cement, reinforced concrete, etc.), including basements, dugouts , cellars, covered spaces and ordinary residential buildings.

When assessing the protective properties of buildings and structures, you can be guided by the following indicative data: a wooden house weakens the effect of radioactive radiation depending on the thickness of the walls by 4-10 times, a stone house - by 10-50 times, cellars and basements in wooden houses - by 50-100 times, a gap with an overlap of a layer of earth of 60-90 cm - 200-300 times.

Consequently, civil defense plans should provide for the use, if necessary, first of all of structures with more powerful protective means; upon receiving a signal about the danger of destruction, the population must immediately take refuge in these premises and remain there until further actions are announced.

The length of time people stay in the premises intended for shelter will depend mainly on the extent to which the area where the settlement is located is contaminated, and the rate at which the radiation level decreases over time.

So, for example, in populated areas located at a considerable distance from the explosion site, where the total radiation doses that unprotected people will receive can become safe within a short time, it is advisable for the population to wait this time in shelters.

In areas of severe radioactive contamination, where the total dose that unprotected people can receive will be high and its reduction will be prolonged under these conditions, long-term stay of people in shelters will become difficult. Therefore, the most rational thing to do in such areas is to first shelter the population in place and then evacuate it to uncontaminated areas. The beginning of the evacuation and its duration will depend on local conditions: the level of radioactive contamination, the availability of vehicles, communication routes, time of year, remoteness of the places where evacuees are located, etc.

Thus, the territory of radioactive contamination according to the trace of the radioactive cloud can be divided conditionally into two zones with different principles of protecting the population.

The first zone includes the territory where radiation levels remain high 5-6 days after the explosion and decrease slowly (by about 10-20% daily). Evacuation of the population from such areas can begin only after the radiation level has decreased to such levels that during the collection and movement in the contaminated area people will not receive a total dose of more than 50 rubles.

The second zone includes areas in which radiation levels decrease during the first 3-5 days after the explosion to 0.1 roentgen/hour.

Evacuation of the population from this zone is not advisable, since this time can be waited out in shelters.

Successful implementation of measures to protect the population in all cases is unthinkable without thorough radiation reconnaissance and monitoring and constant monitoring of radiation levels.

Speaking about protecting the population from radioactive damage following the movement of a cloud formed during a nuclear explosion, it should be remembered that it is possible to avoid damage or achieve its reduction only with a clear organization of a set of measures, which include:

  • organization of a warning system that provides timely warning to the population about the most likely direction of movement of the radioactive cloud and the danger of damage. For these purposes, all available means of communication must be used - telephone, radio stations, telegraph, radio broadcast, etc.;
  • training civil defense units to conduct reconnaissance both in cities and in rural areas;
  • sheltering people in shelters or other premises that protect from radioactive radiation (basements, cellars, crevices, etc.);
  • carrying out the evacuation of the population and animals from the area of ​​persistent contamination with radioactive dust;
  • preparing units and institutions of the civil defense medical service for actions to provide assistance to those affected, mainly treatment, sanitization, examination of water and food products for contamination with radioactive substances;
  • carrying out in advance measures to protect food products in warehouses, retail chains, public catering establishments, as well as water supplies from contamination by radioactive dust (sealing warehouses, preparing containers, improvised materials for covering products, preparing means for decontaminating food and containers, equipment dosimetric instruments);
  • carrying out measures to protect animals and providing assistance to animals in case of defeat.

To ensure reliable protection of animals, it is necessary to provide for keeping them on collective farms and state farms, if possible, in small groups in teams, farms or settlements with shelter areas.

It is also necessary to provide for the creation of additional reservoirs or wells, which can become backup sources of water supply in the event of contamination of water from permanent sources.

Warehouses in which fodder is stored, as well as livestock buildings, which should be sealed whenever possible, become important.

To protect valuable breeding animals, it is necessary to have personal protective equipment, which can be made from available materials on site (eye bands, bags, blankets, etc.), as well as gas masks (if available).

To carry out decontamination of premises and veterinary treatment of animals, it is necessary to take into account in advance the disinfection installations, sprayers, sprinklers, liquid spreaders and other mechanisms and containers available on the farm, with the help of which disinfection and veterinary treatment work can be carried out;

Organization and preparation of formations and institutions to carry out work on the decontamination of structures, terrain, vehicles, clothing, equipment and other civil defense property, for which measures are taken in advance to adapt municipal equipment, agricultural machines, mechanisms and instruments for these purposes. Depending on the availability of equipment, appropriate formations must be created and trained - detachments, teams, groups, units, etc.

Nuclear power plants operate on the principle of releasing and trapping nuclear energy. This process must be controlled. The released energy turns into electricity. An atomic bomb causes a chain reaction that is completely uncontrollable, and the huge amount of released energy causes terrible destruction. Uranium and plutonium are not so harmless elements of the periodic table; they lead to global catastrophes.

To understand what the most powerful atomic bomb on the planet is, we’ll learn more about everything. Hydrogen and atomic bombs belong to nuclear energy. If you combine two pieces of uranium, but each has a mass below the critical mass, then this “union” will far exceed the critical mass. Each neutron participates in a chain reaction because it splits the nucleus and releases another 2-3 neutrons, which cause new decay reactions.

Neutron force is completely beyond human control. In less than a second, hundreds of billions of newly formed decays not only release enormous amounts of energy, but also become sources of intense radiation. This radioactive rain covers the earth, fields, plants and all living things in a thick layer. If we talk about the disasters in Hiroshima, we can see that 1 gram of explosive caused the death of 200 thousand people.


It is believed that a vacuum bomb, created using the latest technologies, can compete with a nuclear one. The fact is that instead of TNT, a gas substance is used here, which is several tens of times more powerful. The high-power aircraft bomb is the most powerful vacuum bomb in the world, which is not a nuclear weapon. It can destroy the enemy, but houses and equipment will not be damaged, and there will be no decay products.

What is the principle of its operation? Immediately after being dropped from the bomber, a detonator is activated at some distance from the ground. The body is destroyed and a huge cloud is sprayed. When mixed with oxygen, it begins to penetrate anywhere - into houses, bunkers, shelters. The burning out of oxygen creates a vacuum everywhere. When this bomb is dropped, a supersonic wave is produced and a very high temperature is generated.


The difference between an American vacuum bomb and a Russian one

The differences are that the latter can destroy an enemy even in a bunker using the appropriate warhead. During an explosion in the air, the warhead falls and hits the ground hard, burrowing to a depth of 30 meters. After the explosion, a cloud is formed, which, increasing in size, can penetrate into shelters and explode there. American warheads are filled with ordinary TNT, so they destroy buildings. A vacuum bomb destroys a specific object because it has a smaller radius. It doesn’t matter which bomb is the most powerful - any of them delivers an incomparable destructive blow, affecting all living things.


H-bomb

The hydrogen bomb is another terrible nuclear weapon. The combination of uranium and plutonium generates not only energy, but also temperature, which rises to a million degrees. Hydrogen isotopes combine to form helium nuclei, which creates a source of colossal energy. The hydrogen bomb is the most powerful - this is an indisputable fact. It is enough just to imagine that its explosion is equal to the explosions of 3,000 atomic bombs in Hiroshima. Both in the USA and in the former USSR one can count 40 thousand bombs of varying power - nuclear and hydrogen.

The explosion of such ammunition is comparable to the processes observed inside the Sun and stars. Fast neutrons split the uranium shells of the bomb itself at enormous speed. Not only heat is released, but also radioactive fallout. There are up to 200 isotopes. The production of such nuclear weapons is cheaper than atomic ones, and their effect can be enhanced as many times as desired. This is the most powerful bomb detonated in the Soviet Union on August 12, 1953.

Consequences of the explosion

The result of a hydrogen bomb explosion is threefold. The very first thing that happens is a powerful blast wave is observed. Its power depends on the height of the explosion and the type of terrain, as well as the degree of air transparency. Large firestorms can form that do not subside for several hours. And yet, the secondary and most dangerous consequence that the most powerful thermonuclear bomb can cause is radioactive radiation and contamination of the surrounding area for a long time.


Radioactive remains from a hydrogen bomb explosion

When an explosion occurs, the fireball contains many very small radioactive particles that are retained in the atmospheric layer of the earth and remain there for a long time. Upon contact with the ground, this fireball creates incandescent dust consisting of decay particles. First, the larger one settles, and then the lighter one, which is carried hundreds of kilometers with the help of the wind. These particles can be seen with the naked eye; for example, such dust can be seen on snow. It is fatal if anyone gets nearby. The smallest particles can remain in the atmosphere for many years and thus “travel”, circling the entire planet several times. Their radioactive emissions will become weaker by the time they fall out as precipitation.

If a nuclear war were to occur using a hydrogen bomb, the contaminated particles would lead to the destruction of life within a radius of hundreds of kilometers from the epicenter. If a superbomb is used, then an area of ​​several thousand kilometers will be contaminated, making the earth completely uninhabitable. It turns out that the most powerful bomb in the world created by man is capable of destroying entire continents.

Thermonuclear bomb "Kuzka's mother". Creation

The AN 602 bomb received several names - “Tsar Bomba” and “Kuzka’s Mother”. It was developed in the Soviet Union in 1954-1961. It had the most powerful explosive device in the entire existence of mankind. Work on its creation was carried out over several years in a highly classified laboratory called “Arzamas-16”. A hydrogen bomb with a yield of 100 megatons is 10 thousand times more powerful than the bomb dropped on Hiroshima.

Its explosion is capable of wiping Moscow off the face of the earth in a matter of seconds. The city center could easily evaporate in the literal sense of the word, and everything else could turn into tiny rubble. The most powerful bomb in the world would wipe out New York and all its skyscrapers. It would leave behind a twenty-kilometer-long molten smooth crater. With such an explosion, it would not have been possible to escape by going down to the subway. The entire territory within a radius of 700 kilometers would be destroyed and infected with radioactive particles.


Explosion of the Tsar Bomba - to be or not to be?

In the summer of 1961, scientists decided to conduct a test and observe the explosion. The most powerful bomb in the world was to explode at a test site located in the very north of Russia. The huge area of ​​the test site occupies the entire territory of the island of Novaya Zemlya. The scale of the defeat was supposed to be 1000 kilometers. The explosion could have left industrial centers such as Vorkuta, Dudinka and Norilsk contaminated. Scientists, having comprehended the scale of the disaster, put their heads together and realized that the test was cancelled.

There was no place to test the famous and incredibly powerful bomb anywhere on the planet, only Antarctica remained. But it was also not possible to carry out an explosion on the icy continent, since the territory is considered international and obtaining permission for such tests is simply unrealistic. I had to reduce the charge of this bomb by 2 times. The bomb was nevertheless detonated on October 30, 1961 in the same place - on the island of Novaya Zemlya (at an altitude of about 4 kilometers). During the explosion, a monstrous huge atomic mushroom was observed, which rose 67 kilometers into the air, and the shock wave circled the planet three times. By the way, in the Arzamas-16 museum in the city of Sarov, you can watch newsreels of the explosion on an excursion, although they claim that this spectacle is not for the faint of heart.

August 21st, 2015

The Tsar Bomba is the nickname of the AN602 hydrogen bomb, which was tested in the Soviet Union in 1961. This bomb was the most powerful ever detonated. Its power was such that the flash from the explosion was visible 1000 km away, and the nuclear mushroom rose almost 70 km.

The Tsar Bomba was a hydrogen bomb. It was created in Kurchatov's laboratory. The power of the bomb was such that it would have been enough to destroy 3800 Hiroshimas.

Let's remember the history of its creation...

At the beginning of the “atomic age,” the United States and the Soviet Union entered into a race not only in the number of atomic bombs, but also in their power.

The USSR, which acquired atomic weapons later than its competitor, sought to level the situation by creating more advanced and more powerful devices.

The development of a thermonuclear device codenamed “Ivan” was started in the mid-1950s by a group of physicists led by Academician Kurchatov. The group involved in this project included Andrei Sakharov, Viktor Adamsky, Yuri Babaev, Yuri Trunov and Yuri Smirnov.

During research, scientists also tried to find the limits of the maximum power of a thermonuclear explosive device.

The theoretical possibility of obtaining energy by thermonuclear fusion was known even before World War II, but it was the war and the subsequent arms race that raised the question of creating a technical device for the practical creation of this reaction. It is known that in Germany in 1944, work was carried out to initiate thermonuclear fusion by compressing nuclear fuel using charges of conventional explosives - but they were not successful, since it was not possible to obtain the required temperatures and pressures. The USA and the USSR have been developing thermonuclear weapons since the 40s, almost simultaneously testing the first thermonuclear devices in the early 50s. In 1952, the United States exploded a charge with a yield of 10.4 megatons on the Eniwetak Atoll (which is 450 times more powerful than the bomb dropped on Nagasaki), and in 1953, the USSR tested a device with a yield of 400 kilotons.

The designs of the first thermonuclear devices were poorly suited for actual combat use. For example, the device tested by the United States in 1952 was a ground-based structure the height of a 2-story building and weighing over 80 tons. Liquid thermonuclear fuel was stored in it using a huge refrigeration unit. Therefore, in the future, serial production of thermonuclear weapons was carried out using solid fuel - lithium-6 deuteride. In 1954, the United States tested a device based on it at Bikini Atoll, and in 1955, a new Soviet thermonuclear bomb was tested at the Semipalatinsk test site. In 1957, tests of a hydrogen bomb were carried out in Great Britain.

Design research lasted for several years, and the final stage of development of “product 602” occurred in 1961 and took 112 days.

The AN602 bomb had a three-stage design: the nuclear charge of the first stage (calculated contribution to the explosion power is 1.5 megatons) triggered a thermonuclear reaction in the second stage (contribution to the explosion power - 50 megatons), and it, in turn, initiated the so-called nuclear “ Jekyll-Hyde reaction" (nuclear fission in uranium-238 blocks under the influence of fast neutrons generated as a result of the thermonuclear fusion reaction) in the third stage (another 50 megatons of power), so that the total calculated power of AN602 was 101.5 megatons.

However, the initial option was rejected, since in this form the bomb explosion would have caused extremely powerful radiation contamination (which, however, according to calculations, would still have been seriously inferior to that caused by much less powerful American devices).
As a result, it was decided not to use the “Jekyll-Hyde reaction” in the third stage of the bomb and to replace the uranium components with their lead equivalent. This reduced the estimated total yield of the explosion by almost half (to 51.5 megatons).

Another limitation for the developers was the capabilities of aircraft. The first version of a bomb weighing 40 tons was rejected by aircraft designers from the Tupolev Design Bureau - the carrier aircraft would not be able to deliver such a cargo to the target.

As a result, the parties reached a compromise - nuclear scientists reduced the weight of the bomb by half, and aviation designers were preparing a special modification of the Tu-95 bomber for it - the Tu-95V.

It turned out that it would not be possible to place a charge in the bomb bay under any circumstances, so the Tu-95V had to carry the AN602 to the target on a special external sling.

In fact, the carrier aircraft was ready in 1959, but nuclear physicists were instructed not to speed up work on the bomb - just at that moment there were signs of a decrease in tension in international relations in the world.

At the beginning of 1961, however, the situation deteriorated again, and the project was revived.

The final weight of the bomb including the parachute system was 26.5 tons. The product had several names at once - “Big Ivan”, “Tsar Bomba” and “Kuzka’s Mother”. The latter stuck to the bomb after Soviet leader Nikita Khrushchev’s speech to the Americans, in which he promised to show them “Kuzka’s mother.”

In 1961, Khrushchev quite openly spoke to foreign diplomats about the fact that the Soviet Union was planning to test a super-powerful thermonuclear charge in the near future. On October 17, 1961, the Soviet leader announced the upcoming tests in a report at the XXII Party Congress.

The testing site was determined to be the Sukhoi Nos test site on Novaya Zemlya. Preparations for the explosion were completed in late October 1961.

The Tu-95B carrier aircraft was based at the airfield in Vaenga. Here, in a special room, final preparations for testing were carried out.

On the morning of October 30, 1961, the crew of pilot Andrei Durnovtsev received an order to fly to the test site area and drop a bomb.

Taking off from the airfield in Vaenga, the Tu-95B reached its design point two hours later. The bomb was dropped from a parachute system from a height of 10,500 meters, after which the pilots immediately began to move the car away from the dangerous area.

At 11:33 Moscow time, an explosion was carried out at an altitude of 4 km above the target.

The power of the explosion significantly exceeded the calculated one (51.5 megatons) and ranged from 57 to 58.6 megatons in TNT equivalent.

Operating principle:

The action of a hydrogen bomb is based on the use of energy released during the thermonuclear fusion reaction of light nuclei. It is this reaction that takes place in the depths of stars, where, under the influence of ultra-high temperatures and enormous pressure, hydrogen nuclei collide and merge into heavier helium nuclei. During the reaction, part of the mass of hydrogen nuclei is converted into a large amount of energy - thanks to this, stars constantly release huge amounts of energy. Scientists copied this reaction using isotopes of hydrogen - deuterium and tritium, which gave it the name "hydrogen bomb". Initially, liquid isotopes of hydrogen were used to produce charges, and later lithium-6 deuteride, a solid compound of deuterium and an isotope of lithium, was used.

Lithium-6 deuteride is the main component of the hydrogen bomb, thermonuclear fuel. It already stores deuterium, and the lithium isotope serves as the raw material for the formation of tritium. To start a thermonuclear fusion reaction, it is necessary to create high temperatures and pressures, as well as to separate tritium from lithium-6. These conditions are provided as follows.

The shell of the container for thermonuclear fuel is made of uranium-238 and plastic, and a conventional nuclear charge with a power of several kilotons is placed next to the container - it is called a trigger, or initiator charge of a hydrogen bomb. During the explosion of the plutonium initiator charge under the influence of powerful X-ray radiation, the shell of the container turns into plasma, compressing thousands of times, which creates the necessary high pressure and enormous temperature. At the same time, neutrons emitted by plutonium interact with lithium-6, forming tritium. Deuterium and tritium nuclei interact under the influence of ultra-high temperature and pressure, which leads to a thermonuclear explosion.

If you make several layers of uranium-238 and lithium-6 deuteride, then each of them will add its own power to the explosion of a bomb - that is, such a “puff” allows you to increase the power of the explosion almost unlimitedly. Thanks to this, a hydrogen bomb can be made of almost any power, and it will be much cheaper than a conventional nuclear bomb of the same power.

Witnesses of the test say that they have never seen anything like this in their lives. The nuclear mushroom of the explosion rose to a height of 67 kilometers, the light radiation could potentially cause third-degree burns at a distance of up to 100 kilometers.

Observers reported that at the epicenter of the explosion, the rocks took a surprisingly flat shape, and the ground turned into some kind of military parade ground. Complete destruction was achieved over an area equal to the territory of Paris.

Ionization of the atmosphere caused radio interference even hundreds of kilometers from the test site for about 40 minutes. The lack of radio communication convinced the scientists that the tests went as well as possible. The shock wave resulting from the explosion of the Tsar Bomba circled the globe three times. The sound wave generated by the explosion reached Dikson Island at a distance of about 800 kilometers.

Despite the heavy clouds, witnesses saw the explosion even at a distance of thousands of kilometers and could describe it.

Radioactive contamination from the explosion turned out to be minimal, as the developers had planned - more than 97% of the power of the explosion was provided by the thermonuclear fusion reaction, which practically did not create radioactive contamination.

This allowed scientists to begin studying the test results on the experimental field within two hours after the explosion.

The explosion of the Tsar Bomba really made an impression on the whole world. It turned out to be four times more powerful than the most powerful American bomb.

There was a theoretical possibility of creating even more powerful charges, but it was decided to abandon the implementation of such projects.

Oddly enough, the main skeptics turned out to be the military. From their point of view, such weapons had no practical meaning. How do you order him to be delivered to the “den of the enemy”? The USSR already had missiles, but they were unable to fly to America with such a load.

Strategic bombers were also unable to fly to the United States with such “luggage.” In addition, they became easy targets for air defense systems.

Atomic scientists turned out to be much more enthusiastic. Plans were put forward to place several super-bombs with a capacity of 200–500 megatons off the coast of the United States, the explosion of which would cause a giant tsunami that would literally wash away America.

Academician Andrei Sakharov, future human rights activist and Nobel Peace Prize laureate, put forward a different plan. “The carrier could be a large torpedo launched from a submarine. I fantasized that it was possible to develop a ramjet water-steam nuclear jet engine for such a torpedo. The target of an attack from a distance of several hundred kilometers should be enemy ports. A war at sea is lost if the ports are destroyed, the sailors assure us of this. The body of such a torpedo can be very durable; it will not be afraid of mines and barrage nets. Of course, the destruction of ports - both by a surface explosion of a torpedo with a 100-megaton charge that “jumped out” of the water, and by an underwater explosion - is inevitably associated with very large casualties,” the scientist wrote in his memoirs.

Sakharov told Vice Admiral Pyotr Fomin about his idea. An experienced sailor, who headed the “atomic department” under the Commander-in-Chief of the USSR Navy, was horrified by the scientist’s plan, calling the project “cannibalistic.” According to Sakharov, he was ashamed and never returned to this idea.

Scientists and military personnel received generous awards for the successful testing of the Tsar Bomba, but the very idea of ​​super-powerful thermonuclear charges began to become a thing of the past.

Nuclear weapons designers focused on things less spectacular, but much more effective.

And the explosion of the “Tsar Bomba” to this day remains the most powerful of those ever produced by humanity.

Tsar Bomba in numbers:

  • Weight: 27 tons
  • Length: 8 meters
  • Diameter: 2 meters
  • Power: 55 megatons in TNT equivalent
  • Nuclear mushroom height: 67 km
  • Mushroom base diameter: 40 km
  • Fireball diameter: 4.6 km
  • Distance at which the explosion caused skin burns: 100 km
  • Explosion visibility distance: 1 000 km
  • The amount of TNT needed to equal the power of the Tsar Bomba: a giant TNT cube with a side 312 meters (height of the Eiffel Tower)

sources

http://www.aif.ru/society/history/1371856

http://www.aif.ru/dontknows/infographics/kak_deystvuet_vodorodnaya_bomba_i_kakovy_posledstviya_vzryva_infografika

http://llloll.ru/tsar-bomb

And a little more about the non-peaceful ATOM: for example, and here. And there was also such a thing that there were also The original article is on the website InfoGlaz.rf Link to the article from which this copy was made -