Ядерный Апокалипсис (2 фото). Погружение в хаос

Как известно, на сегодняшний день очень многие люди боятся последствий ядерного апокалипсиса. Недавно он произошел в мире Minecraft.
Данная сборка была разработана известным обзорщиком под ником Alex.

Сюжет игры

В кубическом мире произошла ужасная ядерная катастрофа. Ее разрушительные последствия даже трудно вообразить. Вам предстоит взять на себя роль выжившего в этом кромешном аду и найти тех не многих, кто так же смог уцелеть.

Особенности

"Ядерная" сборка включает в себя следующие модификации:
. Animated Player Mod - совершенно новая анимация игровых персонажей.
. Lycanites Mobs - огромное количество агрессивно настроенных существ.
. EnchantingPlus - улучшенная система зачарований с новыми чарами.
. CrackedZombie Mod - множество усовершенствованных зомби. Теперь ходячие мертвецы не получают урон от солнечного света.
. Buildcraft - "технологичный" мод, который добавляет в игру множество новых предметов и механизмов.
. Backpacks Mod - необходим для выживания в кошмарных условиях ядерного апокалипсиса. Мод добавляет в игру множество новых сумок и рюкзаков. Вам нельзя долго оставаться на одном месте, так что они понадобятся вам для длительных путешествий.
. Dynamic Lights - в кромешной тьме никак не обойтись без света, поэтому вам потребуется усовершенствованная система освещения. Новые факелы и осветительные приборы помогут вам не сбиться в пути в темноте.
. Roguelike - множество новых подземелий.
. VoxelMap - карта, которая поможет вам ориентироваться на местности.

Когда чудовищной атаке был подвержен японский город Хиросима. К счастью, человечество больше не решалось повторять подобные фатальные ошибки. В кино же ядерный апокалипсис является довольно распространенной темой. Однако в фильмах такие сюжеты раскрываются не с целью демонстрации превосходства одного государства над другим, а являются предостережением для всех и каждого о плачевных последствиях использования запрещенного оружия. Давайте же рассмотрим, какие киноленты про ядерный апокалипсис заслуживают внимания широкой зрительской аудитории.

«Книга Илая» (2009)

Открывает наш список картин про ядерный апокалипсис фильм «Книга Илая». История повествует о жизни людей, которые стоят на пороге вымирания. Цивилизация пришла в полный упадок после страшной катастрофы. Повсюду царит разруха, хаос, голод и нищета. Цепляясь за последний шанс на существование, люди превратились в агрессивные, бездушные существа, готовые идти на любые преступления в поиске воды и провизии.

Единственным человеком, которому удается противостоять своим животным инстинктам в атмосфере ядерного апокалипсиса, остается Илай - мудрец и философ с большой дороги. Вперед его ведет слово Бога. Герой странствует по пустынным просторам, оберегая Священное писание. Вскоре на пути Илая встает банда властного тирана Карнеги, который планирует поработить выживших и стать единоличным правителем на Земле. Сумеет ли святоша противостоять злобе и кощунству на пути к заветной цели?

«Письма мертвого человека» (1986)

Фильм представляет собой первый пример добротной советской постапокалиптики от режиссера Константина Лопушанского. Лента, сценарий которой разрабатывался в сотрудничестве с самим дает собственный взгляд на то, как сложилась бы жизнь, случись вооруженное противостояние во время «холодной войны». Ведь в тот непростой период всерьез рассматривались намерения США взорвать СССР. Ядерный апокалипсис в результате противостояния двух сверхдержав - именно эта тема была выбрана авторами фильма.

Сюжет картины знакомит зрителя с нобелевским лауреатом по имени Ларсон Последний ежедневно отсылает письма бесследно пропавшему сыну, который потерялся после катастрофы, случившейся в результате случайного ядерного взрыва на одной из американских военных баз. В это время остатки человечества, скрываясь в подземных убежищах и катакомбах, пытаются наладить новый социальный строй. Финалом картины становится красноречивое предупреждение человечеству от имени реальных мировых ученых об опасности ядерных технологий.

«Доктор Стрейнджлав, или Как я перестал бояться и полюбил бомбу» (1964)

Продолжим обозревать лучшие фильмы про ядерный апокалипсис. Без всяких сомнений, внимания широкой аудитории заслуживает, пожалуй, наиболее нашумевшая лента о мировом кризисе за всю историю кинематографа. Речь идет о картине культового режиссера Стенли Кубрика - «Доктор Стрейнджлав, или Как я перестал бояться и полюбил бомбу», которая увидела свет в далеком 1964 году. Фильм, снятый по мотивам литературного творения Питера Джорджа «Красная тревога», вышел в самый разгар «холодной войны».

Согласно сюжету, некий высокий чин американской армии - генерал Риппер отдает распоряжение взорвать СССР. Ядерный апокалипсис здесь происходит не наяву, а в головах властных, самодовольных политиков. К счастью, все противостояние в конечном итоге сводится лишь к сатирическим словесным перепалкам в кабинетах лидеров мировых держав.

«Завещание» (1983)

«Завещание» - мощнейшее послание человечеству о том, какие ужасы и лишения ожидают всех нас после ядерной войны. Режиссеру ленты Линн Титман удалось в полной мере раскрыть тему существования людей в условиях масштабной катастрофы.

История переносит зрителя в город, который становится настоящим кладбищем после атаки ядерной бомбы. Зараженным гибельной радиацией оказывается абсолютно все, включая спасительные запасы воды. Не имея доступа к безопасной пище, матери вынуждены кормить детей ядовитым грудным молоком. Взрослые влачат жалкую жизнь в надежде на помощь от власть имущих. Однако спасение так и не приходит.

Стоит заметить, что картина «Завещание» имеет очень слабый сюжет. Но сила фильма не в сложном и запутанном повествовании, а в удивительной актерской игре. Особенно реалистично передала великолепная игра юных актеров, задействованных в ленте.

17 сентября официально открылась 68-я сессия Генеральной Ассамблеи ООН. Ежегодные общие прения начались во вторник и продлятся до 1 октября. Один из вопросов, стоящих на повестке дня Генассамблеи - очередной раунд переговоров по ядерному разоружению, зашедших в тупик ещё 16 лет назад.

В изрядной степени не самые выгодные для России инициативы легитимизируются представлениями, господствующими в массовом сознании уже семь десятков лет. Наличие ядерного оружия рассматривается как предпосылка для глобальной катастрофы. Между тем, эти представления в значительной мере являют собой гремучую смесь из пропагандистских штампов и откровенных "городских легенд". Вокруг "бомбы" сложилась обширная мифология, имеющая очень отдалённое отношение к реальности.

Попробуем разобраться хотя бы с частью собрания ядерных мифов и легенд ХХI-го века.

Миф №1: Действие ядерного оружия может иметь "геологические" масштабы. Так, мощность известной "Царь-Бомбы" (она же "Кузькина-мать") "уменьшили (до 58-ми мегатонн), чтобы не пробить земную кору до мантии. 100 мегатонн на это вполне хватило бы". Более радикальные варианты добираются до "необратимых тектонических сдвигов" и даже "раскалывания шарика" (т.е. планеты). К реальности, как несложно догадаться, это имеет не просто нулевое отношение - оно стремится в область отрицательных чисел.

Итак, каково "геологическое" действие ядерного оружия в действительности?

Диаметр воронки, образующейся при наземном ядерном взрыве в сухих песчаных и глинистых грунтах (т.е., по сути, максимально возможный - на более плотных грунтах он будет, естественно, меньше), рассчитывается по весьма незатейливой формуле "38 умножить на корень кубический из мощности взрыва в килотоннах". Взрыв мегатонной бомбы создаёт воронку диаметром около 400 м, при этом её глубина в 7-10 раз меньше (40-60 м). Наземный взрыв 58-ми мегатонного боеприпаса, таким образом, образует воронку диаметром около полутора километров и глубиной порядка 150-200 м. Взрыв "Царь-бомбы" был, с некоторыми нюансами, воздушным, и произошёл над скальным грунтом - с соответствующими последствиями для "копательной" эффективности. Иными словами, "пробивание земной коры" и "раскалывание шарика" - это из области рыбацких баек и пробелов в области ликвидации неграмотности.

Миф №2: "Запасов ядерного оружия в России и США хватает на гарантированное 10-20 кратное уничтожение всех форм жизни на Земле". "Ядерного оружия, которое уже есть, хватит на то, чтобы уничтожить жизнь на земле 300 раз подряд". Реальность: пропагандистский фейк.

При воздушном взрыве мощностью в 1 Мт зона полных разрушений (98% погибших) имеет радиус 3,6 км, сильных и средних разрушений - 7,5 км. На расстоянии 10 км гибнет лишь 5% населения (впрочем, 45% получают травмы разной степени тяжести). Иными словами, площадь "катастрофического" поражения при мегатонном ядерном взрыве составляет 176,5 квадратных километра (примерная площадь Кирова, Сочи и Набережных Челнов; для сравнения - площадь Москвы на 2008-й - 1090 квадратных километров). На март 2013-го Россия имела 1480 стратегических боеголовок, США - 1654. Иными словами, Россия и США могут совместными усилиями превратить в зону разрушений вплоть до средних включительно страну размером с Францию, но никак не весь мир.

При более прицельном "огне" США могут даже после разрушения ключевых объектов, обеспечивающих ответный удар (командные пункты, узлы связи, ракетные шахты, аэродромы стратегической авиации и т.д.) практически полностью и сразу уничтожить практически всё городское население РФ (в России 1097 городов и около 200 "негородских" поселений с численностью населения больше 10 тыс. человек); погибнет и значительная часть сельского (в основном из-за радиоактивных осадков). Довольно очевидные косвенные эффекты в короткие сроки уничтожат значительную часть выживших. Ядерная атака РФ даже в "оптимистическом" варианте будет намного менее эффективной - население США более чем вдвое многочисленно, гораздо более рассредоточено, Штаты обладают заметно большей "эффективной" (то есть сколько-нибудь освоенной и населённой) территорией, менее затрудняющим выживание уцелевших климатом. Тем не менее, ядерного залпа России с лихвой хватит, чтобы довести противника до центральноафриканского состояния - при условии, что основная часть её ядерного арсенала не будет уничтожена превентивным ударом.

Естественно, все эти расчёты исходят из варианта неожиданной атаки, без возможности предпринять какие-либо меры по снижению ущерба (эвакуация, использование убежищ). В случае их использования потери будут кратно меньше. Иными словами, две ключевые ядерные державы, обладающие подавляющей долей атомного оружия, способны практически стереть с лица Земли друг друга, но не человечество, и, тем более, биосферу. Фактически, для почти полного уничтожения человечества потребуется не менее 100 тыс. боеголовок мегатонного класса.

Впрочем, возможно, человечество убьют косвенные эффекты - ядерная зима и радиоактивное заражение? Начнём с первой.

Миф №3: Обмен ядерными ударами породит глобальное снижение температуры с последующим коллапсом биосферы. Реальность: политически мотивированная фальсификация.

Автором концепции ядерной зимы является Карл Саган, последователями которого оказались два австрийских физика и группа советского физика Александрова. По итогам их трудов появилась следующая картина ядерного апокалипсиса. Обмен ядерными ударами приведёт к массовым лесным пожарам и пожарам в городах.
При этом зачастую будет наблюдаться "огненный шторм", в реальности наблюдавшийся при крупных городских пожарах - например, лондонском 1666-го года, Чикагском 1871-го, московском 1812-го. Во время Второй мировой его жертвами стали подвергшиеся бомбардировкам Сталинград, Гамбург, Дрезден, Токио, Хиросима и ещё ряд менее крупных городов.

Суть явления такова. Над зоной крупного пожара значительно нагревается воздух, и начинает подниматься вверх. На его место приходят новые массы воздуха, вполне насыщенные поддерживающим горение кислородом. Возникает эффект "кузнечных мехов" или "дымовой трубы". В итоге пожар продолжается до тех пор, пока не выгорает всё, что может гореть - а при развивающихся в "кузнечном горне" огненного шторма температурах гореть может многое.

По итогам лесных и городских пожаров в стратосферу отправятся миллионы тонн сажи, которая экранирует солнечное излучение - при взрыве 100 мегатонн солнечный поток у поверхности Земли сократится в 20 раз, 10000 мегатонн - в 40. На несколько месяцев наступит ядерная ночь, фотосинтез прекратится. Глобальные температуры в "десятитысячном" варианте упадут минимум на 15 градусов, в среднем - на 25, в некоторых районах - на 30-50. После первых десяти дней температура начнёт медленно повышаться, но в целом продолжительность ядерной зимы составит не менее 1-1,5 года. Голод и эпидемии растянут время коллапса до 2-2,5 лет.

Впечатляющая картина, не правда ли? Проблема в том, что это фейк. Так, в случае лесных пожаров модель исходит из того, что взрыв мегатонной боеголовки немедленно вызовет пожар на площади 1000 квадратных километров. Между тем, в действительности на расстоянии в 10 км от эпицентра (площадь 314 квадратных километров) уже будут наблюдаться только отдельные очаги. Реальное дымообразование при лесных пожарах в 50-60 раз меньше заявленного в модели. Наконец, основная масса сажи при лесных пожарах не достигает стратосферы, и довольно быстро вымывается из нижних атмосферных слоёв.

Равным образом, огненный шторм в городах требует для своего возникновения весьма специфических условий - равнинной местности и огромной массы легко возгораемых построек (японские города 1945-го года - это дерево и промасленная бумага; Лондон 1666-го - это в основном дерево и оштукатуренное дерево, и то же самое относится к старым немецким городам). Там, где не соблюдалось хотя бы одно из этих условий, огненный шторм не возникал - так, Нагасаки, застроенный в типично японском духе, но расположенный в холмистой местности, так и не стал его жертвой. В современных городах с их железобетонной и кирпичной застройкой огненный шторм не может возникнуть по чисто техническим причинам. Пылающие как свечи небоскрёбы, нарисованные буйным воображением советских физиков - не более чем фантом. Добавлю, что городские пожары 1944-45, как, очевидно, и более ранние, не приводили к значительному выбросу сажи в стратосферу - дымы поднимались только на 5-6 км (граница стратосферы 10-12 км) и вымывались из атмосферы за несколько дней ("чёрный дождь").

Иными словами, количество экранирующей сажи в стратосфере окажется на порядки меньше, чем заложено в модели. При этом концепция ядерной зимы была уже проверена экспериментально. Перед "Бурей в пустыне" Саган утверждал, что выбросы нефтяной сажи от горящих скважин приведут к достаточно сильному похолоданию в глобальных масштабах - "году без лета" по образцу 1816-го, когда каждую ночь в июне-июле температура падала ниже нуля даже в США. Среднемировые температуры упали на 2,5 градуса, следствием стал глобальный голод. Однако в реальности после войны в Заливе ежедневное выгорание 3 млн. баррелей нефти и до 70 млн. кубометров газа, продолжавшееся около года, оказало на климат очень локальный (в пределах региона) и ограниченный эффект.

Таким образом, ядерная зима невозможна даже в том случае, если ядерные арсеналы снова вырастут до уровня 1980-х. Экзотические варианты в стиле размещения ядерных зарядов в угольных шахтах с целью "сознательного" создания условий для возникновения ядерной зимы тоже неэффективны - поджечь угольный пласт, не обрушив при этом шахту, малореально, и в любом случае задымление окажется "низковысотным". Тем не менее, работы на тему ядерной зимы (с ещё более "оригинальными" моделями) продолжают публиковаться, однако... Последний всплеск интереса к ним странным образом совпал с инициативой Обамы по всеобщему ядерному разоружению.

Второй вариант "косвенного" апокалипсиса - глобальное радиоактивное заражение.

Миф №4: Атомная война приведёт к превращению значительной части планеты в ядерную пустыню, а подвергшаяся ядерным ударам территория будет бесполезна для победителя из-за радиоактивного заражения.

Посмотрим на то, что потенциально должно её создать. Ядерные боеприпасы мощностью в мегатонны и сотни килотонн - водородные (термоядерные). Основная часть их энергии выделяется за счёт реакции синтеза, в ходе которой радионуклиды не возникают. Однако такие боеприпасы всё же содержат делящиеся материалы. В двухфазном термоядерном устройстве собственно ядерная часть выступает только в качестве триггера, запускающего реакцию термоядерного синтеза. В случае с мегатонной боеголовкой - это маломощный плутониевый заряд мощностью в примерно в 1 килотонну. Для сравнения - плутониевая бомба, упавшая на Нагасаки, имела эквивалент в 21 кт, при этом в ядерном взрыве сгорело лишь 1,2 кг делящегося вещества из 5, остальная плутониевая "грязь" с периодом полураспада в 28 тысяч лет просто рассеялась по окрестностям, внеся дополнительный вклад в радиоактивное заражение. Более распространены, однако, трёхфазные боеприпасы, где зона синтеза, "заряженная" дейтеридом лития, заключена в урановую оболочку, в которой происходит "грязная" реакция деления, усиливающая взрыв. Она может быть сделана даже из непригодного для обычных ядерных боеприпасов урана-238. Однако из-за весовых ограничений в современных стратегических боеприпасах предпочитают использовать ограниченное количество более эффективного урана-235. Тем не менее, даже в этом случае количество радионуклидов, выделившихся при воздушном взрыве мегатонного боеприпаса, превысит уровень Нагасаки не в 50, как следовало бы, исходя из мощности, а в 10 раз.

При этом из-за преобладания короткоживущих изотопов интенсивность радиоактивного излучения быстро падает - снижаясь через 7 часов в 10 раз, 49 часов - в 100, 343 часа - в 1000 раз. Далее, отнюдь нет необходимости ждать, пока радиоактивность снизится до пресловутых 15-20 микрорентген в час - люди без каких-либо последствий столетиями живут на территориях, где естественный фон превышает стандарты в сотни раз. Так, во Франции фон местами составляет до 200 мкр/ч, в Индии (штаты Керала и Тамилнад) - до 320 мкр/ч, в Бразилии на пляжах штатов Рио-де-Жанейро и Эспириту-Санту фон колеблется от 100 до 1000 мкр/ч (на пляжах курортного города Гуарапари - 2000 мкр/ч). В курортном иранском Рамсаре средний фон составляет 3000, а максимальный - 5000 мкр/ч, при этом его основным источником является радон - что предполагает массированное поступление этого радиоактивного газа в организм.

В итоге, например, панические прогнозы, раздававшиеся после хиросимской бомбардировки ("растительность сможет появиться только через 75 лет, а через 60-90 - сможет жить человек"), скажем так мягко, не оправдались. Выжившее население не эвакуировалось, однако не вымерло полностью и не мутировало. Между 1945-м и 1970-м среди переживших бомбардировку количество лейкемий превысило норму менее чем в два раза (250 случаев против 170 в контрольной группе).

Заглянем на Семипалатинский полигон. Всего на нём было произведено 26 наземных (наиболее грязных) и 91 воздушный ядерный взрыв. Взрывы в большинстве своём тоже были крайне "грязными" - особенно отличилась первая советская ядерная бомба (знаменитая и крайне неудачно спроектированная сахаровская "слойка"), в которой из 400 килотонн общей мощности на реакцию синтеза пришлось не более 20%. Впечатляющие выбросы обеспечил и "мирный" ядерный взрыв, с помощью которого было создано озеро Чаган. Как выглядит результат?

На месте взрыва пресловутой слойки - заросшая абсолютно нормальной травой воронка. Не менее банально, несмотря на витающую вокруг пелену истерических слухов, выглядит и ядерное озеро Чаган. В российской и казахской прессе можно встретить пассажи вроде этого. "Любопытно, что вода в "атомном" озере чистая, и там даже водится рыба. Однако края водоема "фонят" настолько сильно, что их уровень излучения фактически приравнивается к радиоактивным отходам. В этом месте дозиметр показывает 1 микрозиверт в час, что в 114 раз больше нормы". На приложенной к статье фотографии дозиметра фигурируют при этом 0,2 микрозиверта и 0,02 миллирентгена - то есть 200 мкр/ч. Как было показано выше, по сравнению с Рамсаром, Кералой и бразильскими пляжами - это несколько бледный результат. Не меньший ужас у общественности вызывают и особо крупные сазаны, водящиеся в Чагане - однако увеличение размеров живности в данном случае объясняется вполне естественными причинами. Впрочем, это не мешает феерическим публикациям с рассказами об охотящихся на купальщиков озёрных монстрах и рассказам "очевидцев" о "кузнечиках размером с сигаретную пачку".

Примерно то же самое можно было наблюдать и на атолле Бикини, где американцы взорвали 15-ти мегатонный боеприпас (впрочем, "чистый" однофазный). "Спустя четыре года после испытаний водородной бомбы на атолле Бикини, ученые, исследовавшие полуторакилометровый кратер, образовавшийся после взрыва, обнаружили под водой совершенно не то, что предполагали увидеть: вместо безжизненного пространства в кратере цвели большие кораллы высотой 1 м и диаметром ствола около 30 см, плавало множество рыбы - подводная экосистема оказалась полностью восстановленной". Иными словами, перспектива жизни в радиоактивной пустыне с отравленной на многие годы почвой и водой человечеству не грозит даже в худшем случае.

В целом же однократное уничтожение человечества и тем более всех форм жизни на Земле с помощью ядерного оружия технически невозможно. При этом одинаково опасными являются и представления о "достаточности" нескольких ядерных зарядов для нанесения противнику неприемлемого ущерба, и миф о "бесполезности" для агрессора подвергшейся ядерной атаке территории, и легенда о невозможности ядерной войны как таковой из-за неизбежности глобальной катастрофы даже в том случае, если ответный ядерный удар окажется слабым. Победа над не располагающим ядерным паритетом и достаточным количеством ядерного оружия противником возможна - без глобальной катастрофы и с существенной выгодой.

Евгений Пожидаев - международный обозреватель ИА REGNUM
© 1999-2013 REGNUM

Взрывной характер

Ядро урана содержит 92 протона. Природный уран представляет собой в основном смесь двух изотопов: U238 (в ядре которого 146 нейтронов) и U235 (143 нейтрона), причем последнего в природном уране лишь 0,7%. Химические свойства изотопов абсолютно идентичны, потому и разделить их химическими методами невозможно, но различие в массах (235 и 238 единиц) позволяет сделать это физическими методами: смесь уранов переводят в газ (гексафторид урана), а затем прокачивают через бесчисленные пористые перегородки. Хотя изотопы урана не отличимы ни по внешнему виду, ни химически, их разделяет пропасть в свойствах ядерных характеров.

Процесс деления U238 - платный: прилетающий извне нейтрон должен принести с собой энергию - 1 МэВ или более. А U235 бескорыстен: для возбуждения и последующего распада от пришедшего нейтрона ничего не требуется, вполне достаточно его энергии связи в ядре.

При попадании нейтрона в способное к делению ядро образуется неустойчивый компаунд, но очень быстро (через 10−23−10−22 с) такое ядро разваливается на два осколка, не равных по массе и «мгновенно» (в течение 10−16−10−14 с) испускающих по два-три новых нейтрона, так что со временем может размножаться и число делящихся ядер (такая реакция называется цепной). Возможно такое только в U235, потому что жадный U238 не желает делиться от своих собственных нейтронов, энергия которых на порядок меньше 1 МэВ. Кинетическая энергия частиц - продуктов деления на много порядков превышает энергию, выделяющуюся при любом акте химической реакции, в которой состав ядер не меняется.

Критическая сборка

Продукты деления нестабильны и еще долго «приходят в себя», испуская различные излучения (в том числе нейтроны). Нейтроны, которые испускаются через значительное время (до десятков секунд) после деления, называют запаздывающими, и хотя доля их по сравнению с мгновенными мала (менее 1%), роль, которую они играют в работе ядерных установок, - важнейшая.

Продукты деления при многочисленных столкновениях с окружающими атомами отдают им свою энергию, повышая температуру. После того как в сборке с делящимся веществом появились нейтроны, мощность тепловыделения может возрастать или убывать, а параметры сборки, в которой число делений в единицу времени постоянно, называют критическими. Критичность сборки может поддерживаться и при большом, и при малом числе нейтронов (при соответственно большей или меньшей мощности тепловыделения). Тепловую мощность увеличивают, либо подкачивая в критическую сборку дополнительные нейтроны извне, либо делая сборку сверхкритичной (тогда дополнительные нейтроны поставляют все более многочисленные поколения делящихся ядер). Например, если надо повысить тепловую мощность реактора, его выводят на такой режим, когда каждое поколение мгновенных нейтронов чуть менее многочисленно, чем предыдущее, но благодаря запаздывающим нейтронам реактор едва заметно переходит критическое состояние. Тогда он не идет в разгон, а набирает мощность медленно - так, что прирост ее можно в нужный момент остановить, введя поглотители нейтронов (стержни, содержащие кадмий или бор).

Образующиеся при делении нейтроны часто пролетают мимо окружающих ядер, не вызывая повторного деления. Чем ближе к поверхности материала рожден нейтрон, тем больше у него шансов вылететь из делящегося материала и никогда не возвратиться обратно. Поэтому формой сборки, сберегающей наибольшее количество нейтронов, является шар: для данной массы вещества он имеет минимальную поверхность. Ничем не окруженный (уединенный) шар из 94% U235 без полостей внутри становится критичным при массе в 49 кг и радиусе 85 мм. Если же сборка из такого же урана представляет собой цилиндр с длиной, равной диаметру, она становится критичной при массе в 52 кг. Поверхность уменьшается и при возрастании плотности. Поэтому-то взрывное сжатие, не меняя количества делящегося материала, может приводить сборку в критическое состояние. Именно этот процесс и лежит в основе распространенной конструкции ядерного заряда.

Шаровая сборка

Но чаще всего в ядерном оружии применяют не уран, а плутоний-239. Его получают в реакторах, облучая уран-238 мощными нейтронными потоками. Плутоний стоит примерно в шесть раз дороже U235, но зато при делении ядро Pu239 испускает в среднем 2,895 нейтрона - больше, чем U235 (2,452). К тому же вероятность деления плутония выше. Все это приводит к тому, что уединенный шар Pu239 становится критичным при почти втрое меньшей массе, чем шар из урана, а главное - при меньшем радиусе, что позволяет уменьшить габариты критической сборки.

Сборка выполняется из двух тщательно подогнанных половинок в форме шарового слоя (полой внутри); она заведомо подкритична - даже для тепловых нейтронов и даже после окружения ее замедлителем. Вокруг сборки из очень точно пригнанных блоков взрывчатки монтируют заряд. Чтобы сберечь нейтроны, надо и при взрыве сохранить благородную форму шара - для этого слой взрывчатого вещества необходимо подорвать одновременно по всей его внешней поверхности, обжав сборку равномерно. Широко распространено мнение, что для этого нужно много электродетонаторов. Но так было только на заре «бомбостроения»: для срабатывания многих десятков детонаторов требовалось много энергии и немалые размеры системы инициирования. В современных зарядах применяется несколько отобранных по специальной методике, близких по характеристикам детонаторов, от которых срабатывает высокостабильная (по скорости детонации) взрывчатка в отфрезерованных в слое поликарбоната канавках (форма которых на сферической поверхности рассчитывается с применением методов геометрии Римана). Детонация со скоростью примерно 8 км/с пробежит по канавкам абсолютно равные расстояния, в один и тот же момент времени достигнет отверстий и подорвет основной заряд - одновременно во всех требуемых точках.

Взрыв вовнутрь

Направленный внутрь взрыв сдавливает сборку давлением более миллиона атмосфер. Поверхность сборки уменьшается, в плутонии почти исчезает внутренняя полость, плотность увеличивается, причем очень быстро - за десяток микросекунд сжимаемая сборка проскакивает критическое состояние на тепловых нейтронах и становится существенно сверхкритичной на нейтронах быстрых.

Через период, определяемый ничтожным временем незначительного замедления быстрых нейтронов, каждый из нового, более многочисленного их поколения добавляет производимым им делением энергию в 202 МэВ в и без того распираемое чудовищным давлением вещество сборки. В масштабах происходящих явлений прочность даже самых лучших легированных сталей столь мизерна, что никому и в голову не приходит учитывать ее при расчетах динамики взрыва. Единственное, что не дает разлететься сборке, - инерция: чтобы расширить плутониевый шар за десяток наносекунд всего на 1 см, требуется придать веществу ускорение, в десятки триллионов раз превышающее ускорение свободного падения, а это непросто.

В конце концов вещество все же разлетается, прекращается деление, но процесс на этом не завершается: энергия перераспределяется между ионизованными осколками разделившихся ядер и другими испущенными при делении частицами. Их энергия - порядка десятков и даже сотен МэВ, но только электрически нейтральные гамма-кванты больших энергий и нейтроны имеют шансы избежать взаимодействия с веществом и «ускользнуть». Заряженные же частицы быстро теряют энергию в актах столкновений и ионизаций. При этом испускается излучение - правда, уже не жесткое ядерное, а более мягкое, с энергией на три порядка меньшей, но все же более чем достаточной, чтобы выбить у атомов электроны - не только с внешних оболочек, но и вообще все. Мешанина из голых ядер, ободранных с них электронов и излучения с плотностью в граммы на кубический сантиметр (попытайтесь представить, как хорошо можно загореть под светом, приобретшим плотность алюминия!) - все то, что мгновение назад было зарядом, - приходит в некое подобие равновесия. В совсем молодом огненном шаре устанавливается температура порядка десятков миллионов градусов.

Огненный шар

Казалось бы, даже и мягкое, но двигающееся со скоростью света излучение должно оставить далеко позади вещество, которое его породило, но это не так: в холодном воздухе пробег квантов кэвных энергий составляет сантиметры, и двигаются они не по прямой, а меняя направление движения, переизлучаясь при каждом взаимодействии. Кванты ионизируют воздух, распространяются в нем, подобно вишневому соку, вылитому в стакан с водой. Это явление называют радиационной диффузией.

Молодой огненный шар взрыва мощностью в 100 кт через несколько десятков наносекунд после завершения вспышки делений имеет радиус 3 м и температуру почти 8 млн кельвинов. Но уже через 30 микросекунд его радиус составляет 18 м, правда, температура спускается ниже миллиона градусов. Шар пожирает пространство, а ионизованный воздух за его фронтом почти не двигается: передать ему значительный импульс при диффузии излучение не может. Но оно накачивает в этот воздух огромную энергию, нагревая его, и, когда энергия излучения иссякает, шар начинает расти за счет расширения горячей плазмы, распираемой изнутри тем, что раньше было зарядом. Расширяясь, подобно надуваемому пузырю, плазменная оболочка истончается. В отличие от пузыря, ее, конечно, ничто не надувает: с внутренней стороны почти не остается вещества, все оно летит от центра по инерции, но через 30 микросекунд после взрыва скорость этого полета - более 100 км/с, а гидродинамическое давление в веществе - более 150 000 атм! Стать чересчур уж тонкой оболочке не суждено, она лопается, образуя «волдыри».

Какой из механизмов передачи энергии огненного шара окружающей среде превалирует, зависит от мощности взрыва: если она велика - основную роль играет радиационная диффузия, если мала - расширение плазменного пузыря. Понятно, что возможен и промежуточный случай, когда эффективны оба механизма.

Процесс захватывает новые слои воздуха, энергии на то, чтобы ободрать все электроны с атомов, уже не хватает. Иссякает энергия ионизованного слоя и обрывков плазменного пузыря, они уже не в силах двигать перед собой огромную массу и заметно замедляются. Но то, что до взрыва было воздухом, движется, оторвавшись от шара, вбирая в себя все новые слои воздуха холодного… Начинается образование ударной волны.

Ударная волна и атомный гриб

При отрыве ударной волны от огненного шара меняются характеристики излучающего слоя и резко возрастает мощность излучения в оптической части спектра (так называемый первый максимум). Далее конкурируют процессы высвечивания и изменения прозрачности окружающего воздуха, что приводит к реализации и второго максимума, менее мощного, но значительно более длительного - настолько, что выход световой энергии больше, чем в первом максимуме.

Вблизи взрыва все окружающее испаряется, подальше - плавится, но и еще дальше, где тепловой поток уже недостаточен для плавления твердых тел, грунт, скалы, дома текут, как жидкость, под чудовищным, разрушающим все прочностные связи напором газа, раскаленного до нестерпимого для глаз сияния.

Наконец, ударная волна уходит далеко от точки взрыва, где остается рыхлое и ослабевшее, но расширившееся во много раз облако из конденсировавшихся, обратившихся в мельчайшую и очень радиоактивную пыль паров того, что побывало плазмой заряда, и того, что в свой страшный час оказалось близко к месту, от которого следовало бы держаться как можно дальше. Облако начинает подниматься вверх. Оно остывает, меняя свой цвет, «надевает» белую шапку сконденсировавшейся влаги, за ним тянется пыль с поверхности земли, образуя «ножку» того, что принято называть «атомным грибом».

Нейтронное инициирование

Внимательные читатели могут с карандашом в руках прикинуть энерговыделение при взрыве. При времени нахождения сборки в сверхкритическом состоянии порядка микросекунд, возрасте нейтронов порядка пикосекунд и коэффициенте размножения менее 2 выделяется около гигаджоуля энергии, что эквивалентно… 250 кг тротила. А где же кило- и мегатонны?

Дело в том, что цепь делений в сборке начинается не с одного нейтрона: в нужную микросекунду их впрыскивают в сверхкритическую сборку миллионами. В первых ядерных зарядах для этого использовались изотопные источники, расположенные в полости внутри плутониевой сборки: полоний-210 в момент сжатия соединялся с бериллием и своими альфа-частицами вызывал нейтронную эмиссию. Но все изотопные источники слабоваты (в первом американском изделии генерировалось менее миллиона нейтронов за микросекунду), а полоний уж очень скоропортящийся - всего за 138 суток снижает свою активность вдвое. Поэтому на смену изотопам пришли менее опасные (не излучающие в невключенном состоянии), а главное - излучающие более интенсивно нейтронные трубки (см. врезку): за несколько микросекунд (столько длится формируемый трубкой импульс) рождаются сотни миллионов нейтронов. А вот если она не сработает или сработает не вовремя, произойдет так называемый хлопок, или «пшик» - маломощный тепловой взрыв.

Нейтронное инициирование не только увеличивает на много порядков энерговыделение ядерного взрыва, но и дает возможность регулировать его! Понятно, что, получив боевую задачу, при постановке которой обязательно указывается мощность ядерного удара, никто не разбирает заряд, чтобы оснастить его плутониевой сборкой, оптимальной для заданной мощности. В боеприпасе с переключаемым тротиловым эквивалентом достаточно просто изменить напряжение питания нейтронной трубки. Соответственно, изменится выход нейтронов и выделение энергии (разумеется, при снижении мощности таким способом пропадает зря много дорогого плутония).

Но о необходимости регулирования энерговыделения стали задумываться много позже, а в первые послевоенные годы разговоров о снижении мощности и быть не могло. Мощнее, мощнее и еще раз мощнее! Но оказалось, что существуют ядерно-физические и гидродинамические ограничения допустимых размеров докритической сферы. Тротиловый эквивалент взрыва в сотню килотонн близок к физическому пределу для однофазных боеприпасов, в которых происходит только деление. В итоге от деления как основного источника энергии отказались, ставку сделали на реакции другого класса - синтеза. О них - в следующих номерах «ПМ».

Ядерные заблуждения

Плотность плутония в момент взрыва увеличивается за счет фазового перехода

Металлический плутоний существует в шести фазах, плотность которых от 14,7 до 19,8 г/см3. При температуре ниже 119 °C существует моноклинная альфа-фаза (19,8 г/см3), но такой плутоний очень хрупок, а в кубической гранецентрированной дельта-фазе (15,9) он пластичен и хорошо обрабатывается (именно эту фазу и стараются сохранить с помощью легирующих добавок). При детонационном обжатии никаких фазовых переходов быть не может - плутоний находится в состоянии квазижидкости. Фазовые переходы опасны при производстве: при больших размерах деталей даже при незначительном изменении плотности возможно достижение критического состояния. Конечно, взрыва не последует - заготовка просто раскалится, но может произойти сброс никелирования (а плутоний очень токсичен).

Нейтронный источник

В вакуумной нейтронной трубке между насыщенной тритием мишенью (катодом) (1) и анодным узлом (2) прикладывается импульсное напряжение в 100 кВ. Когда напряжение максимально, необходимо, чтобы между анодом и катодом оказались ионы дейтерия, которые и требуется ускорить. Для этого служит ионный источник. На его анод (3) подается поджигающий импульс, и разряд, проходя по поверхности насыщенной дейтерием керамики (4), образует ионы дейтерия. Ускорившись, они бомбардируют мишень, насыщенную тритием, в результате чего выделяется энергия 17,6 МэВ и образуются нейтроны и ядра гелия-4.

По составу частиц и даже по энергетическому выходу эта реакция идентична синтезу - процессу слияния легких ядер. В 1950-х многие считали, что это и есть синтез, но позже выяснилось, что в трубке происходит «срыв»: либо протон, либо нейтрон (из которых состоит ион дейтерия, разогнанный электрическим полем) «увязает» в ядре мишени (трития). Если увязает протон, нейтрон отрывается и становится свободным.

Нейтроны - медленные и быстрые

В неделящемся веществе, «отскакивая» от ядер, нейтроны передают им часть своей энергии, тем большую, чем легче (ближе им по массе) ядра. Чем в большем числе столкновений поучаствовали нейтроны, тем более они замедляются, а затем, наконец, приходят в тепловое равновесие с окружающим веществом - термализуются (это занимает миллисекунды). Скорость тепловых нейтронов - 2200 м/с (энергия 0,025 эВ). Нейтроны могут ускользнуть из замедлителя, захватываются его ядрами, но с замедлением их способность вступать в ядерные реакции существенно возрастает, поэтому нейтроны, которые «не потерялись», с лихвой компенсируют убыль численности.

Так, если шар делящегося вещества окружить замедлителем, многие нейтроны покинут замедлитель или будут поглощены в нем, но будут и такие, которые вернутся в шар («отразятся») и, потеряв свою энергию, с гораздо большей вероятностью вызовут акты деления. Если шар окружить слоем бериллия толщиной 25 мм, то можно сэкономить 20 кг U235 и все равно достичь критического состояния сборки. Но за такую экономию платят временем: каждое последующее поколение нейтронов, прежде чем вызвать деление, должно сначала замедлиться. Эта задержка уменьшает число поколений нейтронов, рождающихся в единицу времени, а значит, энерговыделение затягивается. Чем меньше делящегося вещества в сборке, тем больше требуется замедлителя для развития цепной реакции, а деление идет на все более низкоэнергетичных нейтронах. В предельном случае, когда критичность достигается только на тепловых нейтронах, например в растворе солей урана в хорошем замедлителе - воде, масса сборок составляет сотни граммов, но раствор просто периодически вскипает. Выделяющиеся пузырьки пара уменьшают среднюю плотность делящегося вещества, цепная реакция прекращается, а когда пузырьки покидают жидкость, вспышка делений повторяется (если закупорить сосуд, пар разорвет его - но это будет тепловой взрыв, лишенный всех типичных «ядерных» признаков).

Когда произошел Карибский кризис, мир очутился на грани глобальной катастрофы - широкомасштабной ядерной войны между двумя сверхдержавами, СССР и Америкой. Какими были бы остатки человеческой цивилизации после массированного обмена ударами? Военные, конечно, спрогнозировали результат с помощью компьютеров. Они любят все просчитывать, это их конек.

Уолтер Мондейл как-то говорил, что «ветеранов третьей мировой войны не будет». Вопреки этому, казалось бы, абсолютно верному замечанию, всего за несколько десятилетий, прошедших со времени создания атомной бомбы, мир превратился в огромную пороховую бочку. Хотя, если бы пороховую. К концу Холодной войны численность одних лишь стратегических ядерных боеголовок и соответствующих боеприпасов среднего радиуса действия в арсеналах НАТО и Организации Варшавского договора превысило 24 000 единиц.

Их суммарная мощность была 12 000 Мегатонн, с лихвой, чтобы приблизительно миллион раз повторить трагедию в Хиросиме. И это - не учитывая тактического ядерного оружия, различных, начиненных атомными боеголовками мин, торпед и артиллерийских снарядов. Без арсенала боевых отравляющих веществ. Не считая бактериологическое и климатическое оружие. Хватило бы этого для того что-бы осуществить Армагеддон? Расчеты показали что - за глаза.

Разумеется, аналитикам было сложновато учесть все факторы, но они старались, в различных институтах. Прогнозы получились откровенно удручающие. Подсчитали, что в ходе крупномасштабной ядерной войны, стороны смогут успеть обрушить друг другу на головы около 12 000 бомб и ракет различного базирования суммарной мощностью около 6 000 Мт. Что может означать эта цифра?

А это значит массированные удары, в первую очередь, по штабам и узлам связи, местам дислокации шахт межконтинентальных баллистических ракет, позициям ПВО, крупным войсковым и флотским соединениям. Потом, по мере разрастания конфликта, наступит очередь промышленных центров, говоря по другому, городов, то есть зон с высокой степенью урбанизации, и, конечно, плотностью населения. Часть ядерных боеголовок взорвали бы над поверхностью, чтобы вызвать максимальный урон, часть - на больших высотах, для уничтожения спутников, систем связи и энергосистемы.

Некогда, в разгар холодной войны, подразумевающая все это безумие военная стратегия была названа — доктрина второго удара. Министр обороны Америки Роберт Макнамара определял ее как «взаимное гарантированное уничтожение». Американские генералы высчитали, что армия и флот США должны будут успеть уничтожить около четверти населения СССР и больше половины его промышленных мощностей до того, как сами будут уничтожены.

Нам, наверно, не следует забывать, что, по части изобретения нового вооружения человечество продвинулось намного дальше, чем в изготовлении противораковых препаратов, так что американская бомба «Малыш», в августе 1945 года разрушившая Хиросиму, ничто в сравнении с современными экспонатами. Так, к примеру, мощность стратегической ракеты SS-18 Сатана составляет около 20-ти Мт (то есть миллионов тонн в тротиловом эквиваленте). Это приблизительно полторы тысячи «Малышей».

«Чем гуще трава, тем легче косить»

Эту фразу сказал Аларих, легендарный готский вождь, заставивший содрогнуться гордый Рим. В гипотетической ядерной войне жители всех без исключений крупных городов стали бы этой самой травой. Около 70 % населения Западной Европы, Северной Америки и бывшего СССР составляли горожане и жители пригородов. При обмене массированными ядерными ударами они были бы обречены на немедленную смерть. Расчеты показывают, взрыв даже такой устаревшей по нынешним меркам бомбы, как «Малыш», над городом, размером с Нью-Йорк, Токио или Москву, обернулся бы немедленной смертью миллионов людей. Только представьте, какие потери могли бы быть при применении тысяч атомных, водородных и нейтронных бомб.

Это, в свое время, было более или менее точно спрогнозировано. В результате широкомасштабной ядерной войны в большинстве своем городам противоборствующих сторон была приготовлена участь радиоактивных руин. Ударные волны и тепловой импульс разрушили бы строения и автострады, мосты, плотины и дамбы на площадях в миллионы квадратных километров за считанные секунды. Это не так много, по отношению ко всей поверхности суши Северного полушария. Но, вполне хватает для начала конца.

Численность людей, испарившихся, сгоревших, погибших при завалах или нахватавшихся смертельной дозы облучения должно было исчисляться семизначными цифрами. Электромагнитные импульсы, которые распространяются при высотных ядерных взрывах на десятки тысяч километров, вызвали паралич всех систем электроснабжения и связи, уничтожили всю электронику и привели бы к аварии на тех тепловых и атомных станциях, которым чудом бы удалось уцелеть после бомбардировки.

Вероятней всего, они бы нарушили электромагнитное поле Земли. В результате чего, это спровоцировало бы разрушительные стихийные бедствия: ураганы, наводнения, землетрясения.


Существует допущение, согласно которому при массированном применении оружия массового поражения изменилось бы положение Земли относительно Солнца. Но, мы не станем разбираться с этой гипотезой, ограничимся такими «пустячками», как разрушение хранилищ отработанных сборок АЭС, и разгерметизации военных лабораторий, производящих бактериологическое оружие. Какой-то очередной супергрипп, в сотни раз смертоносней печально-известной «испанки», оказавшись на воле, доделал бы дело, которое начато пандемиями холеры и чумы, свирепствующими над радиоактивными завалами, переполненными разлагающихся трупов.

Человечеством было накоплено миллионы тонн токсичных химических отходов, диоксиносодержащих, в первую очередь. Время от времени происходящие аварии, при которых незначительная их часть оказывается в бассейнах рек, приводят к экологическим катастрофам местного масштаба. Лучше и не представлять, что могло бы быть при катастрофе в масштабе один к одному. Серьезные научные источники уверяют, этот сложный вопрос глубоко не исследовали. Как видно, за ненадобностью. И так понятно, что это был бы конец.

Ба, да мы позабыли о проникающей радиации - четвертом факторе идущем, за тепловым излучением, ударной волной и электромагнитным импульсом, отличающем ядерное оружие от других изделий, которые предназначены для уничтожения себе подобных. Радиоактивным заражением были бы отравлены колоссальные территории, на регенерацию которых понадобились бы целые века. В сельской местности радиацией были бы поражены посевы, что привело бы к голоду среди выживших.

Увеличенные дозы радиации - источник раковых заболеваний, патологий новорожденных и генетических мутаций вследствие нарушения цепочек ДНК. В постапокалиптическом мире, после того как уничтожены систем здравоохранения, эти вопросы, из области современной медицины перебрались бы под юрисдикцию колдунов, потому как выживание отдельных врачей совсем не означает сохранения медицины в целом. Миллионы обожженных и покалеченных на первом этапе ядерного конфликта, сразу после обмена ударами - не в счет. Они бы погибли в первые часы, сутки и месяцы после ядерного Апокалипсиса. Задолго до появления знахарей.

«И те из вас что выживут, позавидуют мертвым»

А эти зловещие слова сказал Джон Сильвер, один из самых знаменитых героев английского писателя Р. Л.Стивенсона. Они сказаны абсолютно по другому поводу, но, удивительно ложатся в контекст описания мира после ядерной войны. Ученые сошлись во мнении, что зародившиеся в огненных шарах ядерных взрывов окислы азота будут заброшены в стратосферу, где уничтожат озоновый слой. Восстановление его могло бы занять десятки лет, и это в лучшем случае - при нашем уровне научных знаний нельзя предсказать сроки более точно. Когда-то (приблизительно около 600 миллионов лет назад) озоновый слой стратосферы сыграл роль своеобразной колыбели жизни, защитив поверхность Земли от смертоносного ультрафиолетового излучения Солнца.

Согласно докладу американской национальной академии наук, взрыв 12 000 Мт ядерных зарядов может разрушить 70 % озонового слоя над Северным полушарием - предположительно театром военных действий, и 40 % над Южным, что привело бы к самым мрачным последствиям для всех форм жизни. Человек и животные ослепли бы, ожоги и раковые заболевания кожи стали бы обыденностью. Множество растений и микроорганизмов исчезли бы навсегда, окончательно и бесповоротно.

«Наши стрелы закроют от вас Солнце»

Эту знаменитую фразу: «Наши стрелы закроют от вас солнце», сказал парламентер персидского царя Ксеркса спартанскому царю Леониду, который укрепился в Фермопильском проходе. Ответ Леонида известен из учебников истории: «Что же, значит, мы будем сражаться в тени». На свое счастье, отважные спартанцы не знали последствий применения ядерного оружия. В «тени, отбрасываемой атомными стрелами», вести сражение было бы попросту некому.

В Хиросиме и Нагасаки из за разрушенных ударной волной водопроводов невозможно было локализовать пожары. Развился «огненный шторм». Так называется мощный пожар, который вызывает интенсивное вихревое движение воздуха. Город был накрыт огромной грозовой тучей, пошел дождь - черный, жирный и маслянистый. Попытки вести борьбу с огнем, который был порожден атомной вспышкой и множеством коротких замыканий в электросетях, закончились полным фиаско.

Можно с абсолютной уверенностью говорить, в случае широкомасштабной ядерной войны ни о каких таких попытках и речи идти не могло, потому как тушить пожары было бы попросту некому. В общем, огонь разошелся бы не на шутку, куда там морю пламени, который охватил Дрезден после ритуальных налетов союзнической авиации. В наше время в промышленных центрах сосредоточены колоссальные запасы бумаги, дерева, нефти, масел, бензина, керосина, пластмасс, резины и других горючих материалов, которые способны, полыхая, до черноты затонировать небо. Выбросив в атмосферу над Северным полушарием миллионы тонн частиц дыма, пепла, высокотоксичного вещества и высокодисперсной радиоактивной пыли.

Расчеты доказывают, что за несколько дней непроглядные, по размерам сопоставимые с континентами тучи закрыли бы Солнце над Европой и Северной Америкой, и на Землю бы опустилась непроглядная тьма. Температура воздуха понизилась бы на 30 - 40°С. Земную поверхность поразили трескучие морозы, которые за непродолжительный период времени превратили бы ее в вечную мерзлоту. Похолодание продолжалось бы столетиями, усугубляясь постепенным понижением температуры океанов. То есть, как конечный результат крупномасштабной ядерной войны — климатическая катастрофа.

В первое время, вследствие значительных перепадов температур континентов и океана зародились бы жестокие шторма. Потом, по мере понижения температур, они бы немного улеглись, поверхности морей и океанов покрылась поначалу ледяной крошкой, а потом и торосами. Даже на экваторе стало бы более чем прохладно, около - 50-ти градусов по Цельсию! Животные и растения которые выжили бы в ядерном катаклизме непременно погибли бы от таких холодов. Вымирание было бы поголовным. Джунгли превратились бы в скованный лютыми морозами лес, тайгу из мертвых лиан и пальм. Ну а люди которые бы чудом смогли выжить наверняка узнали бы, что есть настоящий голод.

Радиация пропитала бы практически все - и воздух, и воду, и почву. Выжившие вирусы и насекомые, подвергнувшись мощным мутациям, разнесли бы новые смертельные болезни. Спустя несколько лет после ядерной войны от семимиллиардного населения осталась бы, в лучшем случае, ничтожная тень - около 20-ти миллионов человек, рассеянных по погруженной в ядерные сумерки Земле. Может быть, это бы и были «Сумерки богов». Человечество возвратилось бы в первобытное состояние при несравнимо худших условиях окружающей среды. Не хочется думать о мародерстве, ритуальных убийствах и каннибализме, но, вероятно, самые жуткие картины апокалипсиса, нарисованные фантастами, стали бы обыденностью.

Выродившиеся потомки норманнов

Нет сомнений, человечеству очень бы повезло, если бы оно вообще смогло уцелеть в результате катаклизма. А какие у него сохранились бы знания, и не стали бы передаваемые из поколения в поколение воспоминания об автомобилях, самолетах или телевизорах сродни легендам, которые донес до нас Платон. Альберт Эйнштейн как-то сказал: «Я не знаю, с каким оружием будет , но я точно знаю, что Четвертая Мировая будет с камнями и палками». Вам представляется, это не особо оптимистичный прогноз? А вы представьте себя всего лишь Робинзоном на необитаемом острове и честно признайтесь: по силам ли вам будет воссоздать систему горячего водоснабжения, сконструировать радиоприемник или просто телефон?

Александр Горбовский в книге «Четырнадцать тысячелетий назад» привел в пример судьбу норманнских поселений, которые были основаны в XIV столетии на побережье Северной Америки. Их печальная судьба весьма показательна. В двух словах она выглядит так. Колонисты привезли с собой из Скандинавии знание гончарного ремесла, умение выплавлять и обрабатывать металл. Но, когда связь с метрополией была прервана, они оказались ассимилированы местными ирокезскими племенами, которые находились на значительно более низкой ступени развития, и знания были потеряны безвозвратно. Потомки переселенцев были отброшены назад, в каменный век.

Когда спустя 200 лет в этих местах оказались европейские завоеватели, они нашли только племена, отличавшиеся светлой кожей и использовавшие некоторое количество скандинавских слов. И, это было все! У правнуков викингов не было ни малейшего представления об обвалившихся и заросших мхом сооружениях, которые когда-то были железоплавильными печами и шахтами по добыче полезных ископаемых. А ведь у них не было ядерной зимы…