Известные драматурги и их пьесы. Театр- их стихия, знаменитые русские драматурги

Электронный микроскоп-прибор, который позволяет получать сильно увеличенное изображение объектов, используя для их освещения электроны. Электронный микроскоп (ЭМ) дает возможность видеть детали, слишком мелкие, чтобы их мог разрешить световой (оптический) микроскоп. Электронный микроскоп - один из важнейших приборов для фундаментальных научных исследований строения вещества, особенно в таких областях науки, как биология и физика твердого тела.

Познакомимся с конструкцией современного просвечивающего электронного микроскопа.

Рисунок 1 - Разрез, показывающий основные узлы просвечивающего электронного микроскопа

1- электронная пушка;2-анод;3 -катушка для юстировки пушки;4 -клапан пушки; 5 - 1-я конденсорная линза; 6 - 2-я конденсорная линза; 7 - катушка для наклона пучка; 8 -конденсор 2 диафрагмы;9 -объективная линза;10 -блок образца;11 -дифракционная диафрагма;12 -дифракционная линза;13 -промежуточная линза;14 -1-я проекционная линза;15 -2-я проекционная линза; 16 -бинокуляр (увеличение 12); 17-вакуумный блок колонны;18 -камера для 35-миллиметровой катушечной пленки; 19 -экран для фокусировки;20 -камера для пластинок; 21 -главный экран; 22 -ионный сорбционный насос.

Принцип его построения в общем аналогичен принципу микроскопа оптического, имеются осветительная (электронная пушка), фокусирующая (линзы) и регистрирующая (экран) системы. Тем не менее он сильно отличается в деталях. Например, свет беспрепятственно распространяется в воздухе, тогда как электроны легко рассеиваются при взаимодействии с любым веществом и, следовательно, беспрепятственно могут перемещаться только в вакууме. Иными словами, микроскоп помещают в вакуумную камеру.

Рассмотрим более детально узлы микроскопа. Система из нити накала и ускоряющих электродов носит название электронной пушки (1). В сущности, пушка напоминает триодную лампу. Поток электронов испускается раскаленной вольфрамовой проволочкой (катодом), собирается в пучок и ускоряется в поле двух электродов. Первый - управляющий электрод, или так называемый "цилиндр Венельта", окружает катод, и на него подается напряжение смещения, небольшой отрицательный относительно катода потенциал в несколько сотен вольт. Благодаря наличию такого потенциала на "цилиндре Венельта" фокусируется электронный пучок, выходящий из пушки. Второй электрод - анод (2), пластинка с отверстием в центре, через которое электронный пучок попадает в колонну микроскопа. Между нитью накала (катодом) и анодом приложено ускоряющее напряжение, обычно до 100 кВ. Как правило, имеется возможность ступенчато менять напряжение от 1 до 100 кВ.

Задача пушки - создание стабильного потока электронов при малой испускающей области катода. Чем меньше площадь, испускающая электроны, тем проще получить их тонкий параллельный пучок. Для этого применяют V-образные или специально остро заточенные катоды.

Далее в колонне микроскопа размещены линзы. Большинство современных электронных микроскопов имеют от четырех до шести линз. Выходящий из пушки электронный пучок направляется через пару конденсорных линз (5,6) на объект. Конденсорная линза позволяет в широких пределах изменять условия освещения объекта. Обычно конденсорные линзы представляют собой электромагнитные катушки, в которых токонесущие обмотки окружены (за исключением узкого канала диаметром около 2 - 4 см) сердечником из мягкого железа (рис.2) .

При изменении тока, протекающего через катушки, изменяется фокусное расстояние линзы, вследствие этого пучок расширяется или сужается, увеличивается или уменьшается площадь объекта, освещаемая электронами.

Рисунок 2 - Упрощенная схема магнитной электронной линзы

Обозначены геометрические размеры полюсного наконечника; штриховой линией показан контур, фигурирующий в законе Ампера. Штриховой линией показана так же линия магнитного потока, которая качественно определяет фокусирующее действие линзы. Вр-напряженность поля в зазоре вдали от оптической оси. На практике обмотки линзы имеют водяное охлаждение, а полюсный наконечник съемный

Чтобы получить большое увеличение, необходимо облучать объект потокам большой плотности. Конденсор (линза) обычно освещает площадь объекта, много большую интересующей нас при данном увеличении. Это может привести к перегреву образца и загрязнению его продуктами разложения масляных паров. Температуру объекта можно снизить, уменьшая приблизительно до 1 мкм облучаемую область с помощью второй конденсорной линзы, которая фокусирует изображение, образуемое первой конденсорной линзой. При этом увеличивается поток электронов через исследуемую площадь образца, повышается яркость изображения, образец меньше загрязняется.

Образец (объект) обычно помещают в специальный объектодержатель на тонкой металлической сетке диаметром 2 - 3 мм. Объектодержатель перемещается системой рычагов в двух взаимоперпендикулярных направлениях, наклоняется в разные стороны, что особенно важно при исследовании среза тканей либо таких дефектов кристаллической решетки, как дислокации и включения.

Рисунок 3 - Конфигурация полюсного наконечника высокоразрешающего объектива электронного микроскопа Siemens-102 .

В этой удачной промышленной конструкции диаметр отверстия верхнего полюсного наконечника 2R1=9 мм, диаметр отверстия нижнего полюсного наконечника 2R2=3 мм и межполюсный зазор S=5 мм (R1, R2и S определены на рис.2):1 -объектодержатель,2 -столик образца,3- образец,4 -объективная диафрагма,5 -термисторы,6 -обмотка линзы,7- верхний полюсный наконечник,8 -охлаждаемый стержень,9 -нижний полюсный наконечник,10 -стигматор,11- каналы системы охлаждения,12 -охлаждаемая диафрагма

В колонне микроскопа с помощью вакуумной системы откачки создается относительно низкое давление, примерно 10-5мм рт. ст. На это уходит довольно много времени. Чтобы ускорить подготовку прибора к работе, к камере объектов присоединяется специальное устройство для быстрой смены объекта. В микроскоп при этом попадает лишь очень небольшое количество воздуха, которое удаляется вакуумными насосами. Смена образца обычно занимает 5 мин.

Изображение. При взаимодействии электронного пучка с образцом электроны, проходящие вблизи атомов вещества объекта, отклоняются в направлении, определяемом его свойствами. Этим главным образом и обусловлен видимый контраст изображения. Кроме того, электроны могут еще претерпеть неупругое рассеяние, связанное с изменением их энергии и направления, пройти через объект без взаимодействия или быть поглощенными объектом. При поглощения электронов веществом возникает световое или рентгеновское излучение либо выделяется тепло. Если образец достаточно тонок, то доля рассеянных электронов невелика. Конструкции современных микроскопов позволяют использовать для формирования изображения все эффекты, возникающие при взаимодействии электронного луча с объектом.

Электроны, прошедшие через объект, попадают в объективную линзу (9), предназначенную для получения первого увеличенного изображения. Объективная линза - одна из наиболее важных частей микроскопа, "ответственная" за разрешающую способность прибора. Эта связано с тем, что электроны входят под сравнительно большим углом наклона к оси и вследствие этого даже незначительные аберрации существенно ухудшают изображение объекта.

Рисунок 4 - Образование первого промежуточного изображения объективной линзой и эффект аберрации .

Окончательное увеличенное электронное изображение преобразуется в видимое посредством люминесцентного экрана, который светится под действием электронной бомбардировки. Это изображение, обычно слабоконтрастное, как правило, рассматривают через бинокулярный световой микроскоп. При той же яркости такой микроскоп с увеличением 10 может создавать на сетчатке глаза изображение, в 10 раз более крупное, чем при наблюдении невооруженным глазом. Иногда для повышения яркости слабого изображения применяется люминофорный экран с электронно-оптическим преобразователем. В этом случае окончательное изображение может быть выведено на обычный телевизионный экран, что позволяет записать его на видеоленту. Видеозапись применяется для регистрации изображений, меняющихся во времени, например, в связи с протеканием химической реакции. Чаще всего окончательное изображение регистрируется на фотопленке или фотопластинке. Фотопластинка обычно позволяет получить более четкое изображение, чем наблюдаемое простым глазом или записанное на видеоленте, так как фотоматериалы, вообще говоря, более эффективно регистрируют электроны. Кроме того, на единице площади фотопленки может быть зарегистрировано в 100 раз больше сигналов, чем на единице площади видеоленты. Благодаря этому изображение, зарегистрированное на фотопленке, можно дополнительно увеличить примерно в 10 раз без потери четкости.

Электронные линзы, как магнитные, так и электростатические, несовершенны. Они имеют те же дефекты, что и стеклянные линзы оптического микроскопа - хроматическая, сферическая аберрация и астигматизм. Хроматическая аберрация возникает из-за непостоянства фокусного расстояния при фокусировке электронов с различными скоростями. Эти искажения уменьшают, стабилизируя ток электронного луча и ток в линзах.

Сферическая аберрация обусловлена тем, что периферийные и внутренние зоны линзы формируют изображение на разных фокусных расстояниях. Намотку катушки магнита, сердечник электромагнита и канал в катушке, через который проходят электроны, нельзя выполнить идеально. Асимметрия магнитного поля линзы приводит к значительному искривлению траектории движения электронов.

Работа в режимах микроскопии и дифракции. Затененные области отмечают ход эквивалентных пучков в обоих режимах .

Если магнитное поле несимметрично, то линза искажает изображение (астигматизм). То же самое можно отнести и к электростатическим линзам. Процесс изготовления электродов и их центровка должны быть в высокой степени точны, ибо от этого зависит качество линз.

В большинстве современных электронных микроскопов нарушения симметрии магнитных и электрических полей устраняют с помощью стигматоров. В каналы электромагнитных линз помещают небольшие электромагнитные катушки, изменяя ток, протекающий через них, они исправляют поле. Электростатические линзы дополняют электродами: подбирая потенциал, удается компенсировать асимметрию основного электростатического поля. Стигматоры весьма тонко регулируют поля, позволяют добиваться высокой их симметрии.


Рисунок 5 - Ход лучей в электронном микроскопе просвечивающего типа

В объективе есть еще два важных устройства - апертурная диафрагма и отклоняющие катушки. Если в формировании конечного изображения участвуют отклоненные (дифрагированные) лучи, то качество изображения будет плохим вследствие сферической аберрации линзы. В объективную линзу вводят апертурную диафрагму с диаметром отверстия 40 - 50 мкм, которая задерживает лучи, дифрагированные под углом более 0,5 градуса. Лучи, отклоненные на небольшой угол, создают светлопольное изображение. Если апертурной диафрагмой заблокировать проходящий луч, то изображение формируется дифрагированным лучом. Оно в этом случае получается в темном поле. Однако метод темного поля дает менее качественное изображение, чем светлопольный, поскольку изображение формируется лучами, пересекающимися под углом к оси микроскопа, сферическая аберрация и астигматизм проявляются в большей степени. Отклоняющие же катушки служат для изменения наклона электронного луча. Для получения окончательного изображения нужно увеличить первое увеличенное изображение объекта. Для этой цели применяется проекционная линза. Общее увеличение электронного микроскопа должно меняться в широких пределах, от небольшого соответствующего увеличению лупы (10,20), при котором можно исследовать не только часть объекта, но и увидеть весь объект, до максимального увеличения, позволяющего наиболее полно использовать высокую разрешающую способность электронного микроскопа (обычно до 200000). Здесь уже недостаточно двухступенчатой системы (объектив, проекционная линза). Современные электронные микроскопы, рассчитанные на предельную разрешающую способность, должны иметь по крайней мере три увеличивающие линзы - объектив, промежуточную и проекционную линзы. Такая система гарантирует изменение увеличения в широком диапазоне (от10 до 200000).

Изменение увеличения осуществляется регулировкой тока промежуточной линзы.

Еще один фактор, способствующий получению большего увеличения, - изменение оптической силы линзы. Чтобы увеличить оптическую силу линзы, в цилиндрический канал электромагнитной катушки вставляют специальные так называемые "полюсные наконечники". Они изготовляются из мягкого железа или сплавов е большой магнитной проницаемостью и позволяют сконцентрировать магнитное поле в небольшом объеме. В некоторых моделях микроскопов предусмотрена возможность смены полюсных наконечников, таким образом добиваются дополнительного увеличения изображения объекта.

На конечном экране исследователь видит увеличенное изображение объекта. Различные участки объекта по-разному рассеивают падающие на них электроны. После объективной линзы (как уже указывалось выше) будут фокусироваться только электроны, которые при прохождении объекта отклоняются на малые углы. Эти же электроны фокусируются промежуточной и проекционной линзами на экране для конечного изображения. На экране соответствующие детали объекта будут светлые. В том случае, когда электроны при прохождении участков объекта отклоняются на большие углы, они задерживаются апертурной диафрагмой, расположенной в объективной линзе, и соответствующие участки изображения будут на экране темными.

Изображение становится видимым на флюоресцентном экране (светящимся под действием падающих на него электронов). Фотографируют его либо на фотопластинку, либо на фотопленку, которые расположены на несколько сантиметров ниже экрана. Хотя пластинка помещается ниже экрана, благодаря тому что электронные линзы имеют довольно большую глубину резкости и фокуса, четкость изображения объекта на фотопластинке не ухудшается. Смена пластинки - через герметичный люк. Иногда применяют фотомагазины (от 12 до 24 пластинок), которые устанавливают также через шлюзовые камеры, что позволяет избежать разгерметизации всего микроскопа.

Разрешение. Электронные пучки имеют свойства, аналогичные свойствам световых пучков. В частности, каждый электрон характеризуется определенной длиной волны. Разрешающая способность электронного микроскопа определяется эффективной длиной волны электронов. Длина волны зависит от скорости электронов, а следовательно, от ускоряющего напряжения; чем больше ускоряющее напряжение, тем больше скорость электронов и тем меньше длина волны, а значит, выше разрешение. Столь значительное преимущество электронного микроскопа в разрешающей способности объясняется тем, что длина волны электронов намного меньше длины волны света. Но поскольку электронные линзы не так хорошо фокусируют, как оптические (числовая апертура хорошей электронной линзы составляет всего лишь 0,09, тогда как для хорошего оптического объектива эта величина достигает 0,95), разрешение электронного микроскопа равно 50 - 100 длинам волн электронов. Даже со столь слабыми линзами в электронном микроскопе можно получить предел разрешения около 0,17 нм, что позволяет различать отдельные атомы в кристаллах. Для достижения разрешения такого порядка необходима очень тщательная настройка прибора; в частности, требуются высокостабильные источники питания, а сам прибор (который может быть высотой около 2,5 м и иметь массу в несколько тонн) и его дополнительное оборудование требуют монтажа, исключающего вибрацию.

Для достижения разрешения по точкам лучше чем 0,5 нм необходимо поддерживать прибор в отличном состоянии и, кроме того, использовать микроскоп, который специально предназначен для работ, связанных с получением высокого разрешения. Нестабильность тока объективной линзы и вибрации объектного столика следует свести к минимуму. Исследователь должен быть уверен, что в полюсном наконечнике объектива отсутствуют остатки объектов, оставшихся от предыдущих исследований. Диафрагмы должны быть чистыми. Микроскоп следует устанавливать в месте, удовлетворительном с точки зрения вибраций, посторонних магнитных полей, влажности, температуры и пыли. Постоянная сферической аберрации должна быть меньше 2 мм. Однако самыми важными факторами при работе с высоким разрешением являются стабильность электрических параметров и надежность микроскопа. Скорость загрязнения объекта должна быть меньше, чем 0,1 нм/мин, и это особенно важно для работы с высоким разрешением в темном поле.

Температурный дрейф должен быть минимальным. Для того чтобы свести к минимуму загрязнение и максимально увеличить стабильность высокого напряжения, необходим вакуум причем его следует измерять в конце линии откачки. Внутренность микроскопа, в особенности объем камеры электронной пушки, должны быть скрупулезно чистыми.

Удобными объектами для проверки микроскопа являются тест-объекты с маленькими частичками частично графитизированного угля, в которых видны плоскости кристаллической решетки. Во многих лабораториях такой образец всегда держат под рукой, чтобы проверять состояние микроскопа, и каждый день, прежде чем начать работу с высоким разрешением, на этом образце получают четкие изображения системы плоскостей с межплоскостным расстоянием 0,34 нм, используя держатель образца без наклона. Такая практика проверки прибора настоятельно рекомендуется. Больших затрат времени и энергии требует поддержание микроскопа в наилучшем состоянии. Не следует планировать исследования, требующие высокого разрешения, до тех пор пока не обеспечено поддержание состояния прибора на соответствующем уровне, и, что еще более важно, до тех пор пока микроскопист не вполне уверен, что результаты, полученные с помощью изображений высокого разрешения, оправдают затраченные время и усилия.

Современные электронные микроскопы оборудуются рядом приспособлений. Весьма важна приставка для изменения наклона образца во время наблюдения (гониометрическое устройство). Так как контраст изображения получается главным образом за счет дифракции электронов, то даже малые наклоны образца могут существенно влиять на него. Гониометрическое устройство имеет две взаимно перпендикулярные оси наклона, лежащие в плоскости образца, и приспособленные для его вращения на 360°. При наклоне устройство обеспечивает неизменность положения объекта относительно оси микроскопа. Гониометрическое устройство также необходимо при получении стереоснимков для изучения рельефа поверхности излома кристаллических образцов, рельефа костных тканей, биологических молекул и т. п.

Стереоскопическая пара получается съемкой в электронном микроскопе одного и того же места объекта в двух положениях, когда он повернут на небольшие углы к оси объектива (обычно ±5°).

Интересная информация об изменении структуры объектов может быть получена при непрерывном наблюдении за нагревом объекта. С помощью приставки удается изучить поверхностное окисление, процесс разупорядочения, фазовые превращения в многокомпонентных сплавах, термические превращения некоторых биологических препаратов, провести полный цикл термической обработки (отжиг, закалка, отпуск), причем с контролируемыми высокими скоростями нагрева и охлаждения. Вначале были разработаны устройства, которые герметично присоединялись к камере объектов. Специальным механизмом объект извлекался из колонны, термообрабатывался, а затем вновь помещался в камеруобъектов. Преимущество метода - отсутствие загрязнения колонны и возможность длительной термообработки.

В современных электронных микроскопах имеются устройства для нагревания объекта непосредственно в колонне. Часть объектодержателя окружена микропечью. Нагрев вольфрамовой спирали микропечек осуществляется постоянным током от небольшого источника. Температура объекта изменяется при изменении тока нагревателя и определяется по градуировочной кривой. В устройстве сохраняется высокое разрешение при нагреве вплоть до 1100°С - порядка 30 Е.

В последнее время разработаны устройства, позволяющие нагревать объект электронным пучком самого микроскопа. Объект располагается на тонком вольфрамовом диске. Диск нагревается расфокусированным электронным лучом, небольшая часть которого проходит через отверстие в диске и создает изображение объекта. Температуру диска можно менять в широких пределах, изменяя его толщину и диаметр электронного луча.

Есть в микроскопе и столик для наблюдения объектов в процессе охлаждения до -140° С. Охлаждение - жидким азотом, который заливается в сосуд Дьюара, соединенный со столиком специальным хладопроводом. В этом устройстве удобно исследовать некоторые биологические и органические объекты, которые без охлаждения под воздействием электронного луча разрушаются.

С помощью приставки для растяжения объекта можно исследовать движение дефектов в металлах, процесс зарождения и развития трещины в объекте. Создано несколько типов подобных устройств. В одних использовано механическое нагружение перемещением захватов, в которых крепится объект, или передвижением нажимного стержня, в других - нагрев биметаллических пластин. Образец приклеивается или крепится захватами к биметаллическим пластинам, которые расходятся в стороны, когда их нагревают. Устройство позволяет деформировать образец на 20% и создавать усилие в 80 г.

Самой важной приставкой электронного микроскопа можно считать микродифракционное устройство для электронографических исследований какого-либо определенного участка объекта, представляющего особый интерес. Причем микродифракционную картину на современных микроскопах получают без переделки прибора. Дифракционная картина состоит из серии либо колец, либо пятен. Если в объекте многие плоскости ориентированы благоприятным для дифракции образом, то изображение состоит из сфокусированных пятен. Если электронный луч попадает сразу на несколько зерен беспорядочно ориентированного поликристалла, дифракция создается многочисленными плоскостями, образуется картина из дифракционных колец. По местоположению колец или пятен можно установить структуру вещества (например, нитрид или карбид), его химический состав, ориентацию кристаллографических плоскостей и расстояние между ними.

Электр о нный микроск о п (англ. - electron microscope)этоприбор для наблюдения и фотографирования многократно (до 1·10 6 раз) увеличенного изображения объектов, в котором вместо световых лучей используются пучки электронов, ускоренных до больших энергий (30 - 100 кэВ и более) в условиях глубокого вакуума.

Просвечивающий электронный микроскоп (ПЭМ) обладают самой высокой разрешающей способностью, превосходя по этому параметру световые микроскопы в несколько тысяч раз. Так называемый предел разрешения, характеризующий способность прибора отобразить раздельно мелкие максимально близко расположенные детали объекта, у ПЭМ составляет 2 - 3 A°. При благоприятных условиях можно сфотографировать отдельные тяжёлые атомы. При фотографировании периодических структур, таких как атомные плоскости решёток кристаллов, удаётся реализовать разрешение менее 1 A°.

Для определения структуры твердых тел необходимо использование излучения с длиной волны λ, меньшей, чем межатомные расстояния. В электронном микроскопе с этой целью используют электронные волны.

Длина волны де Бройля λ B для электрона, движущегося со скоростью V

где p – его импульс, h - постоянная Планка, m 0 - масса покоя электрона, V – его скорость.

После простых преобразований получаем, что длина волны де Бройля для электрона, движущегося в ускоряющем однородном электрическом поле с разностью потенциалов U , равна

. (1)

В выражениях для λ Б не учитывается релятивистская поправка, существенная лишь при больших скоростях электронов V >1·10 5 В.

Величина λ Б очень мала что позволяет обеспечивать высокую разрешающую способность электронного микроскопа.

Для электронов же с энергиями от 1 эВ до 10 000 эВ длина волны де Бройля лежит в пределах от ~1 нм до 10 −2 нм, то есть в интервале длин волн рентгеновского излучения . Поэтому волновые свойства электронов должны проявляться, например, при их рассеянии на тех же кристаллах, на которых наблюдается дифракция рентгеновских лучей. [

Современные микроскопы имеют разрешающую способность в (0.1 – 1) нм при энергии электронов (1·10 4 – 1·10 5) эВ, что делает возможным наблюдение групп атомов и даже отдельных атомов, точечных дефектов, рельефа поверхности и т.д.

Просвечивающая электронная микроскопия

В электронно-оптическую систему просвечивающего электронного микроскопа (ПЭМ) входят: электронная пушка И и конденсор 1, предназначенные для обеспечения осветительной системы микроскопа; объективная 2, промежуточная 3 и проекционная 4 линзы, осуществляющие отображение; камера наблюдения и фотографирования Э (рис.1).

Рис.1. Ход лучей в ПЭМ в режиме наблюдения изображения

сточником электронов в электронной пушке служит вольфрамовый термоэмиссионный катод. Конденсорная линза позволяет получить на объекте пятно диаметром в несколько мкм. С помощью отображающей системы на экране ПЭМ формируется электронно-микроскопическое изображение объекта.

В плоскости, сопряженной с объектом, объективная линза формирует первое промежуточное изображение объекта. Все электроны, исходящие из одной точки объекта, попадают в одну точку сопряженной плоскости. Затем с помощью промежуточной и проекционной линз получают изображение на флуоресцирующем экране микроскопа или фотопластине. Это изображение передает структурные и морфологические особенности образца.

В ПЭМ используют магнитные линзы. Линза состоит из обмотки, ярма и полюсного наконечника, концентрирующего магнитное поле в малом объеме и повышающего тем самым оптическую силу линзы.

ПЭМ обладают самой высокой разрешающей способностью (PC), превосходя по этому параметру световые микроскопы в несколько тысяч раз. Так называемый предел разрешения, характеризующий способность прибора отобразить раздельно мелкие максимально близко расположенные детали объекта, у ПЭМ составляет 2 – 3 A°. При благоприятных условиях можно сфотографировать отдельные тяжёлые атомы.При фотографировании периодических структур, таких как атомные плоскости решёток кристаллов, удаётся реализовать разрешение менее 1 A°. Столь высокие разрешения достигаются благодаря чрезвычайно малой длине волны де Бройля электронов. Оптимальным диафрагмированием удаётся снизить сферическую аберрацию объектива, влияющую на PC ПЭМ, при достаточно малой дифракционной ошибке. Эффективных методов коррекции аберраций в не найдено. Поэтому в ПЭМ магнитныеэлектронные линзы(ЭЛ), обладающие меньшими аберрациями, полностью вытеснили электростатические ЭЛ. Выпускаются ПЭМ различного назначения. Их можно разделить на 3 группы:

    упрощённые ПЭМ,

    ПЭМ высокого разрешения,

    ПЭМ с повышенным ускоряющим напряжением.

1. Упрощённые ПЭМ предназначены для исследований, в которых не требуется высокая PC. Они более просты по конструкции (включающей 1 конденсор и 2 – 3 линзы для увеличения изображения объекта), их отличают меньшее (обычно 60 – 80 кВ) ускоряющее напряжение и более низкая его стабильность. PC этих приборов – от 6 до 15. Другие применения - предварительный просмотр объектов, рутинные исследования, учебные цели. Толщина объекта, которую можно «просветить» электронным пучком, зависит от ускоряющего напряжения. В ПЭМ с ускоряющим напряжением 100 кВ изучают объекты толщиной от 10 до нескольких тыс. A°.

2. ПЭМ с высокой разрешающей способностью (2 – 3 Å) – как правило, универсальные приборы многоцелевого назначения (рис.2, а). С помощью дополнительных устройств и приставок в них можно наклонять объект в разных плоскостях на большие углы к оптической оси, нагревать, охлаждать, деформировать его, осуществлять рентгеновский структурный анализ, исследования методами электронографии и пр. Ускоряющее электроны напряжение достигает 100 – 125 кВ, регулируется ступенчато и отличается высокой стабильностью: за 1 – 3 мин оно изменяется не более чем на 1 – 2 миллионные доли от исходного значения. В его оптической системе (колонне) создаётся глубокий вакуум (давление до 1·10 -6 мм рт. ст.). Схема оптической системы ПЭМ – на рис.2, б. Пучок электронов, источником которых служит термокатод, формируется в электронной пушке и затем дважды фокусируется первым и вторым конденсорами, создающими на объекте электронное «пятно», диаметр которого пятна можно изменять от 1 до 20 мкм. После прохождения сквозь объект часть электронов рассеивается и задерживается апертурной диафрагмой. Не рассеянные электроны проходят через отверстие диафрагмы и фокусируются объективом в предметной плоскости промежуточной линзы. Здесь формируется первое увеличенное изображение. Последующие линзы создают второе, третье и т. д. изображения. Последняя линза формирует изображение на флуоресцирующем экране, который светится под воздействием электронов

Рис. 2 а. ПЭМ: 1 – электронная пушка; 2 – конденсорные линзы; 3 – объектив; 4 – проекционные линзы; 5 – световой микроскоп, дополнительно увеличивающий изображение, наблюдаемое на экране: 6 – тубус со смотровыми окнами, через которые можно наблюдать изображение; 7 – вы-соковольтный кабель; 8 – ваку-умная система; 9 – пульт управ-ления; 10 – стенд; 11 – высоко-вольтный источник питания; 12 – источник питания линз.

Рис. 2 б. Оптическая схема ПЭМ. 1 – катод V-образной формы из вольф-рамовой проволоки (разогревается проходящим по нему током до 2800 К); 2 – фокусирующий цилиндр; 3 – анод; 4 – первый (короткофокусный) конденсор, создающий уменьшенное изображение источника электронов; 5 – второй (длиннофокусный) кон-денсор, который переносит умень-шенное изображение источника элек-тронов на объект; 6 – объект; 7 – апертурная диафрагма; 8 – объектив; 9, 10, 11 – система проекционных линз; 12 – катодолюминесцентный экран, на котором формируется конечное изображение.

Увеличение ПЭМ равно произведению увеличений всех линз. Степень и характер рассеяния электронов неодинаковы в различных точках объекта, так как толщина, плотность и химический состав объекта меняются от точки к точке. Соответственно изменяется число электронов, задержанных апертурной диафрагмой после прохождения различных точек объекта, а следовательно, и плотность тока на изображении, которая преобразуется в световой контраст на экране. Под экраном располагается магазин с фотопластинками. При фотографировании экран убирается, и электроны воздействуют на фотоэмульсионный слой. Изображение фокусируется изменением тока, возбуждающего магнитное поле объектива. Токи других линз регулируют для изменения увеличения ПЭМ.

3. ПЭМ с повышенным ускоряющим напряжением (до 200 кВ) предназначены для исследования более толстых объектов (в 2 – 3 раза толще), чем обычные ПЭМ. Их разрешающая способность достигает 3 – 5 Å. Эти приборы отличаются конструкцией электронной пушки: в ней для обеспечения электрической прочности и стабильности имеются два анода, на один из которых подаётся промежуточный потенциал, составляющий половину ускоряющего напряжения. Магнитодвижущая сила линз больше, чем в ПЭМ с ускоряющим напряжением 100 кВ, а сами линзы имеют увеличенные габариты и вес.

4. Сверхвысоковольтные электронные микроскопы (СВЭМ) – крупногабаритные приборы (рис.3) высотой от 5 до 15 м, с ускоряющим напряжением 0,50 – 0,65; 1 – 1,5 и 3.5 МВ.

Для них строят специальные помещения. СВЭМ предназначены для исследования объектов толщиной от 1·до·10 мкм. Электроны ускоряются в электростатическом ускорителе (так называемом ускорителе прямого действия), расположенном в баке, заполненном электроизоляционным газом под давлением. В том же или в дополнительном баке находится высоковольтный стабилизированный источник питания. В перспективе – созданию ПЭМ с линейным ускорителем, в котором электроны ускоряются до энергий 5 – 10 МэВ. При изучении тонких объектов PC СВЭМ ниже, чем у ПЭМ. В случае толстых объектов PC СВЭМ в 10 – 20 раз превосходит PC ПЭМ с ускоряющим напряжением 100 кВ. Если же образец аморфный, то контраст электронного изображения определяется толщиной и коэффициентом поглощения материала образца, что наблюдается, например, при изучении морфологии поверхности с помощью пластиковых или углеродных реплик. В кристаллах, кроме того, имеет место дифракция электронов, что позволяет определять структуру кристалла.

В

Рис.4. Положение диафрагмы Д при светлопольном (а ) и темнопольном (б ) изображениях: П - прошедший луч; D - дифрагированный луч; Обр - образец; И - электронная пушка

ПЭМ можно реализовать следующие режимы работы:

    изображение формируется прошедшим пучком П, дифрагированный пучок D отсекается апертурной диафрагмой Д (рис.4, а ), это - светлопольное изображение;

    апертурная диафрагма Д пропускает дифрагированный D пучок, отсекая прошедший П, это - темнопольное изображение (рис.4, б );

    для получения дифракционной картины задняя фокальная плоскость объективной линзы фокусируется на экране микроскопа (рис.4). Тогда на экране наблюдается дифракционная картина от просвечиваемого участка образца.

Для наблюдения изображения в задней фокальной плоскости объектива устанавливается апертурная диафрагма, в результате уменьшается апертура лучей, формирующих изображение, и повышается разрешение. Эта же диафрагма используется для выбора режима наблюдения (см. рис.2 и 5).

Рис.5. Ход лучей в ПЭМ в режиме микродифракции Д - диафрагма; И - источник электронов; Обр - образец; Э – экран; 1 - конденсорная, 2 - объективная, 3 - промежуточная, 4 -проекционная линзы

лина волны при напряжениях, используемых в ПЭМ, составляет около порядка 1∙10 –3 нм, то есть много меньше постоянной решетки кристаллов а , поэтому дифрагированный луч может распространяться лишь под малыми углами θ к проходящему лучу (
). Дифракционная картина от кристалла представляет собой набор отдельных точек (рефлексов). В ПЭМ в отличие от электронографа можно получить дифракционную картину с малого участка объекта, используя диафрагму в плоскости, сопряженной с объектом. Размер области может составлять около (1×1) мкм 2 . От режима наблюдения изображения к режиму дифракции можно переходить, изменяя оптическую силу промежуточной линзы.
Читайте также:
  1. В 1. Физическая сущность сварочной дуги. Зажигание дуги. Термоэлектронная и автоэлектронная эмиссии. Работа выхода электрона.
  2. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО НАПИСАНИЮ КОНТРОЛЬНЫХ РАБОТ ПО ДИСЦИПЛИНЕ «ЭЛЕКТРОННАЯ КОММЕРЦИЯ»
  3. Номинация: «Музыкально-художественная электронная презентация (групповой проект)»
  4. Номинация: «Музыкально-художественная электронная презентация (индивидуальный проект)»
  5. Регистрация измерительной информации. Электронная регистрация измерительной информации и её воспроизведение.
  6. Электронная коммерция в туризме. Применение мультимедийных технологий в области социально-культурного сервиса и туризма.

Лабораторная работа №3

Электронная микроскопия

Цель работы: ознакомление с основами метода электронной просвечивающей и сканирующей (растровой) микроскопии; количественный анализ микроструктуры образцов по электронно-микроскопическим снимкам.

Материалы и оборудование: напылительная установка, электронный просвечивающий и сканирующий микроскоп, образцы неорганических веществ и материалов, электронно-микроскопические снимки.

Общие сведения

Электронно-микроскопическое исследование неорганических веществ и материалов применяется для изучения особенностей их структуры и фазового со­става. Современные просвечивающие электронные микроскопы высокого разрешения позволяют получать увеличение до 150000 раз, наблюдать распределение атомов в кристаллических решетках.

В электронном микроскопе используется электронный луч, длина волны кото­рого в 100 000 раз короче длин волн видимого света. Это обеспечивает возможность получения большего увеличения. Длина волны l (нм) электронного луча определяется из уравнения

где V- напряжение ускоряющего поля, В.

Если изображение формируется в результате прохождения электронного пучка через прозрачный для электронов образец, имеет место так называемая просвечивающая электронная микроскопия – ПЭМ. Резкое расширение возможностей обработки сигналов позволило развить целый комплекс методов, основанных на использовании принципов ПЭМ и объединенных под общим названием просвечивающей растровой электронной микроскопии – ПРЭМ: энергетический дисперсионный анализ рентгеновского излучения, спектроскопия вторичных электронов, анализ энергетических потерь проходящих электронов и др.

В результате взаимодействия пучка первичных электронов с поверхностью образца может возникнуть вторичная электронная или электромагнитная эмиссия (в рентгеновской или оптической области спектра). В этом случае для получения информации об исследуемых объектах используется сканирующая (растровая) электронная микроскопия – СЭМ (или РЭМ), позволяющая получать изображения объектов в результате регистрации потока вторичных электронов, а также рентгеноспектральный микроанализ, регистрирующий эмитируемый образцом рентгеновский сигнал, что позволяет проводить качественный и количественный фазовый анализ исследуемых объектов.

Основное различие принципов работы просвечивающего и растрового электронных микроскопом связано со способом сбора данных и формированием изображения. Как и в оптическом микроскопе, в просвечивающем электронном микроскопе информацию собирают непрерывно со всей изучаемой области, а увеличенное изображение фокусируют при помощи линз. Другими словами, информация со всех точек изображения собирается одновременно. В растровом электронном микроскопе информация собирается последовательнодля каждой точки по мере движения первичного пучка электронов. На это требуется время, необходимое для получения статистически значимого сигнала от каждой точки.

Просвечивающая электронная микроскопия.

Для проведения исследований методом ПЭМ используют просвечивающие электронные микроскопы, представляющие собой высоковакуумные высоковольтные устройства.

Как видно из рис. 1, изображение формируется в результате прохождения пучка электронов через анализируемый образец.



Рис.1 – Принципиальная схема просвечивающего электронного микроскопа

При этом используются быстрые электроны, для получения которых в современных моделях микроскопов применяют ускоряющее напряжение порядка 100–200 кВ.

В просвечивающем электронном микроскопе применяют два основных вида съемки: светлопольное изображение, отображающее морфологию исследуемого объекта и формируемое центральным пучком прошедших электронов и темнопольное изображение.

Для получения информации о структуре исследуемых образцов на уровне атомного разрешения используют просвечивающую электронную микроскопию высокого разрешения – ВРПЭМ (High Resolution Transmission Electron Microscopy – HRTEM). Данный метод получил широкое распространение только в последние 10–15 лет и является весьма эффективным для определения строения наночастиц.

На рис. 2 представлен снимок аналитического электронного микроскопа.



Источником электронов является нагретая вольфрамовая нить, создающая пучок электронов с плотностью тока до 5x10 4 А/м 2 . Кристаллы гексаборида лантана (LaB 6) позволяют повышать плотность тока до 10 6 А/м 2 .

Электроны испускаются электронной пушкой, установленной в верхней части колонны просвечивающего электронного микроскопа. Внутри колонны путем откачки воздуха поддерживается высокий вакуум. Испускаемые пушкой электроны ускоряются в трубке ускорителя и затем проходят через линзы осветителя, после чего попадают на образец.

После прохождения через образец электронов в объективной линзовой системе формируется изображение. Затем проекционная линза создает увеличенное изображение. Получающееся в итоге изображение, формируемое на флюоресцентном экране, можно наблюдать через окошко камеры наблюдения. Оно может быть записано на фотопленку в фоторегистрирующей камере, либо выведено на экран монитора компьютера.

Приготовление образцов для просвечивающей микроскопии. Для проведения исследований в просвечивающем электронном микроскопе необходимо иметь образцы толщиной не более 0,2 мкм, так как электроны легко поглощаются веществом. Это создает определенные трудности при приготовлении образцов. В этом случае прибегают к способам получения тонких пленок или ультратонких срезов: механической обработке, электрохимическому травлению, ионному травлению, напылению покрытия. Однако при использовании таких методов возможно нарушение первоначальной структуры материала.

Более реальным является метод реплик – косвенный метод исследования, заключающийся в получении отпечатка (реплики) с исследуемой поверхности, с высокой точностью воспроизводящего ее топографию. Схема приготовления реплики показана на рис. 3.

Реплику обычно получают методом напыления. Для этого используют опытный образец объемом не менее 1 см 3 . На свежий скол исследуемого образца наносят в вакууме при испарении углерод, который образует удерживающий слой в виде тонкой сплошной пленки. Угольная пленка не дает собственной структуры. Затем для по­вышения контрастности углеродную пленку оттеняют, напыляя под острым углом к поверхности слой тяжелого металла (платина, хром).

Косое напыление тяжелого металла под углом 20–45° обеспечивает более интенсивное оседание его на соответствующих сторонах выступов и менее интенсивное на впадинах и противоположных сторонах выступов.

Неодинаковая толщина такой пленки металла вызывает разное поглощение проходящих электронов, что влияет на яркость изображения и создает контраст.

Полученную пленку отделяют от образца с помощью 10%-ного раствора желатина. При сушке желатин образует прозрачную пленку, которая отделяется от образца вместе с репликой. Затем пленку помещают в воду. При растворении желатина на поверхности воды остается угольно-платиновая пленка–реплика, которую помещают на несущую сеточку и переносят в объектодержатель электронного микроскопа.

Для более четкого выявления структуры материала свежий скол предварительно (до нанесения реплики) подвергают травлению химическими реагентами. Из-за разной скорости растворения различных компонентов структуры формируется рельеф поверхности образцов. После травления скол тщательно промывают и высушивают. Метод реплик дает удовлетворительные результаты при величине структурных элементов не менее 10 нм. Рассматривая изображение поверхности образца на электронном микроскопе, выбирают наиболее характерные участки структуры.


1 | | |

4 выбрали

Завтра исполняется 220 лет со дня рождения Александра Грибоедова . Его называют писателем одной книги, имея в виду, конечно же, "Горе от ума" . И все же этой единственной книгой он оказал серьезное влияние на российскую драматургию. Давайте вспомним о нем и о других российских драматургах. О писателях, которые мыслят персонажами и диалогами.

Александр Грибоедов

Хотя Грибоедова и называют автором одной книги, до пьесы "Горе от ума" он написал еще несколько драматических произведений. Но популярным его сделала именно комедия московских нравов. Пушкин писал про "Горе от ума" : "Половина стихов должна войти в пословицу". Так и получилось! Благодаря легкому языку Грибоедова эта пьеса стала самым цитируемым произведением русской литературы. И, хоть прошло уже два века, мы повторяем эти хлесткие фразочки: "Минуй нас пуще всех печалей и барский гнев, и барская любовь".

Почему же "Горе от ума" стало единственным знаменитым произведением Грибоедова? Грибоедов был вундеркиндом (окончил Московский университет в возрасте 15 лет), человеком, талантливым во всех отношениях. Писательство для него не было единственным занятием. Грибоедов был дипломатом, талантливым пианистом и композитором. Но судьба уготовила ему недолгую жизнь. Писателю было всего 34 года, когда он погиб во время нападения на русское посольство в Тегеране. На мой взгляд, он просто не успел создать другие великие произведения.

Александр Островский

Александр Островский вырос в Замоскворечье и писал о нравах замоскворецкого купечества. Раньше
этой важной частью общества литераторы как-то не интересовались. Поэтому Островского еще при жизни пафосно называли "Колумбом Замоскворечья".

При этом самому автору пафос был чужд. Его герои – обычные, довольно мелочные люди со своими слабостями и недостатками. В их в жизнях происходят не великие испытания и несчастья, а преимущественно бытовые трудности, являющиеся следствием их собственной жадности или мелочности. И говорят герои Островского не вычурно, а как-то по-настоящему, в речи каждого героя выражаются его психологические особенности.

И все же автор со странной любовью и нежностью относился к своим далеким от идеала персонажам. Впрочем, купцы этой любви не чувствовали и на его произведения обижались. Так, после публикации комедии "Свои люди – сочтемся" , купечество пожаловалось на автора, постановка пьесы была запрещена, а за Островским установили полицейский надзор. Но все это не помешало писателю сформировать новую концепцию русского театрального искусства. Впоследствии его идеи развил Станиславский .

Антон Чехов

Антон Чехов – драматург, популярный не только в России, но и во всем мире. В начале XX века Бернард Шоу писал о нем: "В плеяде великих европейских драматургов имя Чехова сияет как звезда первой величины" . Его пьесы ставят в европейских театрах, а автора называют одним из самых экранизируемых писателей во всем мире. А ведь сам Чехов не предполагал своей будущей славы. Он говорил
своей приятельнице Татьяне Щепкиной-Куперник : "Меня будут читать лет семь, семь с половиной, а потом забудут".

Впрочем, не все современники оценивали чеховские пьесы по достоинству. Толстой, к примеру, хоть и был высокого мнения о рассказах Чехова, даже называл его "Пушкиным в прозе", терпеть не мог его драматических произведений, о чем без стеснения сообщал писателю. К примеру, Толстой как-то заявил Чехову: "А все-таки пьес ваших я терпеть не могу. Шекспир скверно писал, а вы еще хуже!" Ну что ж, не самое худшее сравнение!

Критики говорили о недостатке действия и растянутости сюжета в пьесах Чехова. Но в этом и был замысел автора, он хотел, чтобы его драматические произведения были похожи на жизнь. Чехов писал: "… ведь в жизни не каждую минуту стреляются, вешаются, объясняются в любви. И не каждую минуту говорят умные вещи. Они больше едят, пьют, волочатся, говорят глупости. И вот надо, чтобы это было видно на сцене. Надо создать такую пьесу, где бы люди приходили, уходили, обедали, разговаривали о погоде, играли в винт, но не потому, что так нужно автору, а потому, что так происходит в действительной жизни". За эту реалистичность пьесы Чехова очень любил Станиславский. Впрочем, писатель и режиссер не всегда сходились во мнении о том, как надо ставить ту или иную пьесу. Например, "Вишневый сад" Чехов называл комедией и даже фарсом, а на сцене она стала трагедией. После постановки автор в сердцах заявил, что Станиславский сгубил его пьесу.

Евгений Шварц

Во многих пьесах Евгений Шварц обращается к творчеству Ганса-Христиана Андерсена и даже делает его своеобразным героем своих произведений. Шварц, как и знаменитый датский сказочник, пишет фантастические волшебные истории. Но за сказочной оболочкой его пьес прячутся серьезные проблемы. Из-за этого его произведения часто запрещались цензурой.

Особенно показательна в этом отношении пьеса "Дракон" . Начало как в любой обычной сказке: в городе живет Дракон, который каждый год выбирает себе девушку в жены (через несколько дней она погибает в его пещере от ужаса и отвращения), и тут находится славный рыцарь Ланцелот, который обещает победить чудище. Как ни странно, жители его не поддерживают – им с Драконом как-то привычней и спокойней. А когда Дракон повержен, его место тут же занимает бывший бургомистр, который заводит не менее "драконовские" порядки.

Дракон здесь – не мифическое существо, а аллегория власти. Сколько "драконов" сменяли друг друга на протяжении мировой истории! Да и в тихих жителях городка тоже живет "дракон", ведь они своим безразличным послушанием сами призывают себе новых тиранов.

Григорий Горин

Григорий Горин искал и находил источники вдохновения во всей мировой литературе. Он с легкостью переигрывал сюжеты классиков. Писатель видел смерть Герострата, следил за похождениями Тиля, жил в доме, который построил Свифт, и знал, что произошло после смерти Ромео и Джульетты. Шутка ли, дописывать Шекспира? А Горин не побоялся и создал замечательную историю любви между представителями родов Монтекки и Капулетти, которая началась… на похоронах Ромео и Джульетты.

Горин напоминает мне своего собственного героя – барона Мюнхгаузена из фильма Марка Захарова . Тот тоже путешествует во времени, общается с классиками и не стесняется спорить с ними.

Его жанр – трагикомедия. Как ни смешно слушать остроумные диалоги героев (огромное количество горинских фраз разошлись на цитаты), конец пьесы практически всегда читаешь со слезами на глазах.

А какие у вас любимые драматурги?

Продолжая начатый в прошлых номерах анализ театральной афиши, «Театр.» решил подсчитать, какую долю в общем количестве спектаклей Москвы и Петербурга составляют постановки произведений того или иного автора, и уяснить некоторые общие принципы репертуарной политики обеих столиц.

1. Репертуарный лидер Москвы и Питера Чехов. В московской афише 31 чеховская постановка, в Питере - 12. Наибольшим спросом пользуются пьесы классика (в Москве - аж пять «Вишневых садов» и пять «Чаек»), но в ходу и проза: «Три года», «Дама с собачкой», «Невеста», и т. д. Часто постановщики объединяют вместе несколько юмористических рассказов - как это сделано, например, в спектакле театра Et Cetera «Лица».

2. Чехову немного уступает Островский: в московской афише 27 его пьес, в питерской - 10. Особой популярностью пользуются «Бешеные деньги», «Лес», «Волки и овцы». Однако при пристальном изучении на второй строчке рейтинга в Питере оказывается не Островский, а Пушкин: в Питере 12 пушкинских постановок против 10 постановок Островского. В ход идут и драмы, и проза, и оригинальные композиции - вроде «БАЛбесы (Пушкин. Три сказки») или «Дон Гуан и другие».

3. Третье место в обеих столицах занимает Шекспир (18 постановок в Москве и 10 в Питере). В Москве лидирует «Гамлет», в Питере - «Бесплодные усилия любви».

4. Гоголя - в процентном отношении - тоже почитают одинаково. В Москве 15 постановок, в Питере - 8. Лидируют, естественно, «Женитьба» и «Ревизор».

5. Пятую строчку в Москве занимает Пушкин (в афише - 13 постановок по его сочинениям), а в Питере пятый пункт делят: Теннесси Уильямс и Юрий Смирнов-Несвицкий - драматург и режиссер, ставящий собственные пьесы: «Томление души Риты В.», «За призрачным столом», «Окна, улицы, подворотни» и т. д.

6. Начиная с этого пункта репертуарная политика обеих столиц заметно расходится. Шестое место в московском рейтинге занимает Достоевский (в афише 12 постановок), наиболее популярен «Дядюшкин сон». В Питере же Достоевский делит шестую строчку с: Вампиловым, Шварцем, Ануем, Тургеневым, Нилом Саймоном и Сергеем Михалковым. Имена всех перечисленных авторов встречаются в питерской афише по три раза.

7. После Достоевского в Москве следует Булгаков (11 постановок), наиболее популярна «Кабала святош». А в Питере целый ряд первоклассных, второклассных и неизвестно к какому классу относимых авторов. Сочинения Уайльда, Стриндберга, Мрожека, Горького, Мольера с Шиллером, Людмилы Улицкой и «ахейца» Максима Исаева встречаются в афише столь же часто, как произведения Геннадия Волноходца («Выпить море» и «Зодчий любви»), Константина Гершова («Нос-Анджелес», «Смешно в 2000 году») или Валерия Зимина («Приключения Чубрика», «Брысь! Или истории кота Филофея»).

8. Вслед за Булгаковым в Москве следуют Александр Прахов и Кирилл Королев, которые сами ставят то, что сочиняют. Шутки шутками, а в московской афише по 9 (!) спектаклей каждого из этих авторов. Среди пьес Королева «Верхом на звезде», «Этот мир придуман не нами», «До конца круга, или Принцесса и дрянь». Перу Прахова принадлежат: «Карниз для беседы», «Пес мой», «Птица-шут», «Пусть все будет как есть?!», «С днем рождения! Доктор» и другие пьесы. В Питере же восьмую и, как оказывается, последнюю строчку рейтинга занимают около полусотни авторов, имя каждого из которых встречается в афише по одному разу. Среди них: Арбузов, Грибоедов, Альберт Иванов («Приключения Хомы и суслика»), творческий дуэт Андрея Курбского и Марселя Беркье-Маринье («Любовь втроем»), Артур Миллер, Сухово-Кобылин, Брехт, Шоу, Гроссман, Петрушевская, Алексей Исполатов («Ехала деревня мимо мужика») и еще множество имен, среди которых при пристальном рассмотрении можно заметить аж два сочинения авторов новой драмы: «Яблочный вор» Ксении Драгунской и «Саранча» Биляны Срблянович.

9. Девятую строчку в Москве делят Шварц, Мольер и Уильямс - у каждого из них по 7 названий в афише. Лидируют «Тартюф» и «Стеклянный зверинец».

10. Далее следуют те авторы, чьи имена встречаются в московской афише по 6 раз. Это абсурдист Беккет и творческий союз Ирины Егоровой и Алены Чубаровой, совмещающих сочинительство с исполнением обязанностей, соответственно, главного режиссера и худрука московского театра «КомедиантЪ». Подруги-драматурги специализируются на жизни замечательных людей. Из-под их пера вышли пьесы, легшие в основу постановок «Больше чем театр!» (о Станиславском), «Садовая, 10, далее - везде…» (о Булгакове), «Комнатушка в четыре стола» (тоже о Булгакове), а также спектакль «Шиндры-Бындры», оказывающийся при ближайшем рассмотрении сказкой про Бабу-Ягу, ученого кота и пастуха Никиту.

За пределами топовой десятки, в порядке убывания, в Москве остались: Вампилов, Сароян, кассовый Эрик-Эммануэль Шмитт и сугубо интеллектуальный Яннис Рицос - пожилой греческий драматург, перу которого принадлежат современные переделки античных драм. У Александра Володина, Бориса Акунина, Евгения Гришковца, Горького, Ростана и Юлия Кима по 4 упоминания. Поразительно, что им уступают Рэй Куни (!), а также Уайльд и Хармс - по 3 упоминания. По два раза в московской афише упоминаются имена Важди Муавада, Василия Сигарева, Елены Исаевой, Мартина Макдонаха и Михаила Угарова - как и имена классиков вроде Софокла, Бомарше и Льва Толстого.

За рамками данного репертуарного исследования остались Центр драматургии и режиссуры, Театр. doc и «Практика» - они просто не прислали свой репертуар в редакцию проводившего сбор данных справочника «Театральная Россия». Но и с их участием картина не сильно бы изменилась.

В репертуаре двух российских столиц очень мало российской новой драмы и практически нет качественной современной отечественной прозы. Что же касается зарубежных авторов последних двух-трех десятилетий - от Хайнера Мюллера до Эльфриды Елинек, от Бернара-Мари Кольтеса до Сары Кейн, от Бото Штрауса до Жан-Люка Лагарса, то их в афише и вовсе надо искать днем с огнем. Значительная часть московской и питерской афиши заполнена не столько кассовыми переводными пьесами, - что было бы хоть как-то объяснимо, а никому ничего не говорящими именами и названиями вроде «Диалога самцов» Артура Артиментьева и «Чужих окон» Алексея Бурыкина. Так что возникает ощущение, что главный и единственный репертуарный принцип столичных театров есть принцип пылесоса.

При составлении материала использованы данные, предоставленные справочником «Театральная Россия»