Is there radiation from a hydrogen bomb explosion? What is the most powerful bomb in the world? vacuum vs thermonuclear

During the construction of the nuclear test site at the Semipalatinsk nuclear test site, on August 12, 1953, I had to survive the explosion of the first hydrogen bomb on the globe with a power of 400 kilotons; the explosion occurred suddenly. The earth shook beneath us like water. A wave of the earth's surface passed and raised us to a height of more than a meter. And we were about 30 kilometers away from the epicenter of the explosion. A barrage of air waves threw us to the ground. I rolled over it for several meters, like wood chips. There was a wild roar. Lightning flashed dazzlingly. They inspired animal terror.

When we, observers of this nightmare, stood up, a nuclear mushroom was hanging above us. Warmth emanated from it and a cracking sound was heard. I looked enchanted at the stem of a giant mushroom. Suddenly a plane flew up to him and began making monstrous turns. I thought it was a hero pilot taking samples of radioactive air. Then the plane dived into the mushroom stem and disappeared... It was amazing and scary.

There were indeed planes, tanks and other equipment on the training ground. But later inquiries showed that not a single plane took air samples from the nuclear mushroom. Was this really a hallucination? The mystery was solved later. I realized that this was a chimney effect of gigantic proportions. There were no planes or tanks on the field after the explosion. But experts believed that they evaporated due to high temperature. I believe that they were simply sucked into the fire mushroom. My observations and impressions were confirmed by other evidence.

On November 22, 1955, an even more powerful explosion was carried out. The charge of the hydrogen bomb was 600 kilotons. We prepared the site for this new explosion 2.5 kilometers from the epicenter of the previous nuclear explosion. The melted radioactive crust of the earth was buried immediately in trenches dug by bulldozers; They were preparing a new batch of equipment that was supposed to burn in the flame of a hydrogen bomb. The head of the construction of the Semipalatinsk test site was R. E. Ruzanov. He left a evocative description of this second explosion.

Residents of “Bereg” (testers’ residential town), now the city of Kurchatov, were woken up at 5 o’clock in the morning. It was -15°C. Everyone was taken to the stadium. Windows and doors in the houses were left open.

At the appointed hour, a giant plane appeared, accompanied by fighters.

The flash of the explosion occurred unexpectedly and frighteningly. She was brighter than the Sun. The sun has dimmed. It disappeared. The clouds have disappeared. The sky turned black and blue. There was a blow of terrible force. He reached the stadium with the testers. The stadium was 60 kilometers from the epicenter. Despite this, the air wave knocked people to the ground and threw them tens of meters towards the stands. Thousands of people were knocked down. There was a wild cry from these crowds. Women and children were screaming. The entire stadium was filled with groans of injury and pain, which instantly shocked the people. The stadium with the testers and residents of the town drowned in dust. The city was also invisible from the dust. The horizon where the training ground was was boiling in clouds of flame. The leg of the atomic mushroom also seemed to be boiling. She was moving. It seemed as if a boiling cloud was about to approach the stadium and cover us all. It was clearly visible how tanks, planes, and parts of destroyed structures specially built on the training ground began to be drawn into the cloud from the ground and disappeared into it. The thought drilled into my head: we too will be drawn into this cloud! Everyone was overcome by numbness and horror.

Suddenly, the stem of a nuclear mushroom came off the boiling cloud above. The cloud rose higher, and the leg sank to the ground. Only then did people come to their senses. Everyone rushed to the houses. There were no windows, doors, roofs or belongings. Everything was scattered around. Those injured during the tests were hastily collected and sent to the hospital...

A week later, officers who arrived from the Semipalatinsk test site spoke in whispers about this monstrous spectacle. About the suffering that people endured. About tanks flying in the air. Comparing these stories with my observations, I realized that I had witnessed a phenomenon that can be called the chimney effect. Only on a gigantic scale.

During the hydrogen explosion, huge thermal masses were torn off from the surface of the earth and moved towards the center of the mushroom. This effect arose due to the monstrous temperatures produced by a nuclear explosion. In the initial stage of the explosion, the temperature was 30 thousand degrees Celsius. In the leg of the nuclear mushroom it was at least 8 thousand. A huge, monstrous suction force arose, drawing any objects standing at the test site into the epicenter of the explosion. Therefore, the plane that I saw during the first nuclear explosion was not a hallucination. He was simply pulled into the stem of the mushroom, and he made incredible turns there...

The process that I observed during the explosion of a hydrogen bomb is very dangerous. Not only by its high temperature, but also by the effect I understood of the absorption of gigantic masses, be it the air or water shell of the Earth.

My calculation in 1962 showed that if a nuclear mushroom pierced the atmosphere to a great height, it could cause a planetary catastrophe. When the mushroom rises to a height of 30 kilometers, the process of sucking the Earth's water-air masses into space will begin. The vacuum will begin to work like a pump. The earth will lose its air and water shells along with the biosphere. Humanity will perish.

I calculated that for this apocalyptic process, an atomic bomb of only 2 thousand kilotons is sufficient, that is, only three times the power of the second hydrogen explosion. This is the simplest man-made scenario for the death of humanity.

At one time I was forbidden to talk about it. Today I consider it my duty to speak about the threat to humanity directly and openly.

Huge reserves of nuclear weapons have been accumulated on Earth. Nuclear power plant reactors are operating all over the world. They can become prey for terrorists. The explosion of these objects can reach a power greater than 2 thousand kilotons. Potentially, the scenario for the death of civilization has already been prepared.

What follows from this? It is necessary to protect nuclear facilities from possible terrorism so carefully that they are completely inaccessible to it. Otherwise, planetary catastrophe is inevitable.

Sergey Alekseenko

construction participant

Semipolatinsk Nuclear

Many of our readers associate the hydrogen bomb with an atomic one, only much more powerful. In fact, this is a fundamentally new weapon, which required disproportionately large intellectual efforts for its creation and works on fundamentally different physical principles.

"Puff"

Modern bomb

The only thing that the atomic and hydrogen bombs have in common is that both release colossal energy hidden in the atomic nucleus. This can be done in two ways: to divide heavy nuclei, for example, uranium or plutonium, into lighter ones (fission reaction) or to force the lightest isotopes of hydrogen to merge (fusion reaction). As a result of both reactions, the mass of the resulting material is always less than the mass of the original atoms. But mass cannot disappear without a trace - it turns into energy according to Einstein’s famous formula E=mc2.

A-bomb

To create an atomic bomb, a necessary and sufficient condition is to obtain fissile material in sufficient quantity. The work is quite labor-intensive, but low-intellectual, lying closer to the mining industry than to high science. The main resources for the creation of such weapons are spent on the construction of giant uranium mines and enrichment plants. Evidence of the simplicity of the device is the fact that less than a month passed between the production of the plutonium needed for the first bomb and the first Soviet nuclear explosion.

Let us briefly recall the operating principle of such a bomb, known from school physics courses. It is based on the property of uranium and some transuranium elements, for example, plutonium, to release more than one neutron during decay. These elements can decay either spontaneously or under the influence of other neutrons.

The released neutron can leave the radioactive material, or it can collide with another atom, causing another fission reaction. When a certain concentration of a substance (critical mass) is exceeded, the number of newborn neutrons, causing further fission of the atomic nucleus, begins to exceed the number of decaying nuclei. The number of decaying atoms begins to grow like an avalanche, giving birth to new neutrons, that is, a chain reaction occurs. For uranium-235, the critical mass is about 50 kg, for plutonium-239 - 5.6 kg. That is, a ball of plutonium weighing slightly less than 5.6 kg is just a warm piece of metal, and a mass of slightly more lasts only a few nanoseconds.

The actual operation of the bomb is simple: we take two hemispheres of uranium or plutonium, each slightly less than the critical mass, place them at a distance of 45 cm, cover them with explosives and detonate. The uranium or plutonium is sintered into a piece of supercritical mass, and a nuclear reaction begins. All. There is another way to start a nuclear reaction - to compress a piece of plutonium with a powerful explosion: the distance between the atoms will decrease, and the reaction will begin at a lower critical mass. All modern atomic detonators operate on this principle.

The problems with the atomic bomb begin from the moment we want to increase the power of the explosion. Simply increasing the fissile material is not enough - as soon as its mass reaches a critical mass, it detonates. Various ingenious schemes were invented, for example, to make a bomb not from two parts, but from many, which made the bomb begin to resemble a gutted orange, and then assemble it into one piece with one explosion, but still, with a power of over 100 kilotons, the problems became insurmountable.

H-bomb

But fuel for thermonuclear fusion does not have a critical mass. Here the Sun, filled with thermonuclear fuel, hangs overhead, a thermonuclear reaction has been going on inside it for billions of years, and nothing explodes. In addition, during the synthesis reaction of, for example, deuterium and tritium (heavy and superheavy isotope of hydrogen), energy is released 4.2 times more than during the combustion of the same mass of uranium-235.

Making the atomic bomb was an experimental rather than a theoretical process. The creation of a hydrogen bomb required the emergence of completely new physical disciplines: the physics of high-temperature plasma and ultra-high pressures. Before starting to construct a bomb, it was necessary to thoroughly understand the nature of the phenomena that occur only in the core of stars. No experiments could help here - the researchers’ tools were only theoretical physics and higher mathematics. It is no coincidence that a gigantic role in the development of thermonuclear weapons belongs to mathematicians: Ulam, Tikhonov, Samarsky, etc.

Classic super

By the end of 1945, Edward Teller proposed the first hydrogen bomb design, called the "classic super". To create the monstrous pressure and temperature necessary to start the fusion reaction, it was supposed to use a conventional atomic bomb. The “classic super” itself was a long cylinder filled with deuterium. An intermediate “ignition” chamber with a deuterium-tritium mixture was also provided - the synthesis reaction of deuterium and tritium begins at a lower pressure. By analogy with a fire, deuterium was supposed to play the role of firewood, a mixture of deuterium and tritium - a glass of gasoline, and an atomic bomb - a match. This scheme was called a “pipe” - a kind of cigar with an atomic lighter at one end. Soviet physicists began to develop the hydrogen bomb using the same scheme.

However, mathematician Stanislav Ulam, using an ordinary slide rule, proved to Teller that the occurrence of a fusion reaction of pure deuterium in a “super” is hardly possible, and the mixture would require such an amount of tritium that to produce it it would be necessary to practically freeze the production of weapons-grade plutonium in the United States.

Puff with sugar

In mid-1946, Teller proposed another hydrogen bomb design - the “alarm clock”. It consisted of alternating spherical layers of uranium, deuterium and tritium. During the nuclear explosion of the central charge of plutonium, the necessary pressure and temperature were created for the start of a thermonuclear reaction in other layers of the bomb. However, the “alarm clock” required a high-power atomic initiator, and the United States (as well as the USSR) had problems producing weapons-grade uranium and plutonium.

In the fall of 1948, Andrei Sakharov came to a similar scheme. In the Soviet Union, the design was called “sloyka”. For the USSR, which did not have time to produce weapons-grade uranium-235 and plutonium-239 in sufficient quantities, Sakharov’s puff paste was a panacea. And that's why.

In a conventional atomic bomb, natural uranium-238 is not only useless (the neutron energy during decay is not enough to initiate fission), but also harmful because it eagerly absorbs secondary neutrons, slowing down the chain reaction. Therefore, 90% of weapons-grade uranium consists of the isotope uranium-235. However, neutrons resulting from thermonuclear fusion are 10 times more energetic than fission neutrons, and natural uranium-238 irradiated with such neutrons begins to fission excellently. The new bomb made it possible to use uranium-238, which had previously been considered a waste product, as an explosive.

The highlight of Sakharov’s “puff pastry” was also the use of a white light crystalline substance, lithium deuteride 6LiD, instead of acutely deficient tritium.

As mentioned above, a mixture of deuterium and tritium ignites much more easily than pure deuterium. However, this is where the advantages of tritium end, and only disadvantages remain: in its normal state, tritium is a gas, which causes difficulties with storage; tritium is radioactive and decays into stable helium-3, which actively consumes much-needed fast neutrons, limiting the bomb's shelf life to a few months.

Non-radioactive lithium deutride, when irradiated with slow fission neutrons - the consequences of an atomic fuse explosion - turns into tritium. Thus, the radiation from the primary atomic explosion instantly produces a sufficient amount of tritium for a further thermonuclear reaction, and deuterium is initially present in lithium deutride.

It was just such a bomb, RDS-6s, that was successfully tested on August 12, 1953 at the tower of the Semipalatinsk test site. The power of the explosion was 400 kilotons, and there is still debate over whether it was a real thermonuclear explosion or a super-powerful atomic one. After all, the thermonuclear fusion reaction in Sakharov’s puff paste accounted for no more than 20% of the total charge power. The main contribution to the explosion was made by the decay reaction of uranium-238 irradiated with fast neutrons, thanks to which the RDS-6s ushered in the era of the so-called “dirty” bombs.

The fact is that the main radioactive contamination comes from decay products (in particular, strontium-90 and cesium-137). Essentially, Sakharov’s “puff pastry” was a giant atomic bomb, only slightly enhanced by a thermonuclear reaction. It is no coincidence that just one “puff pastry” explosion produced 82% of strontium-90 and 75% of cesium-137, which entered the atmosphere over the entire history of the Semipalatinsk test site.

American bombs

However, it was the Americans who were the first to detonate the hydrogen bomb. On November 1, 1952, the Mike thermonuclear device, with a yield of 10 megatons, was successfully tested at Elugelab Atoll in the Pacific Ocean. It would be hard to call a 74-ton American device a bomb. “Mike” was a bulky device the size of a two-story house, filled with liquid deuterium at a temperature close to absolute zero (Sakharov’s “puff pastry” was a completely transportable product). However, the highlight of “Mike” was not its size, but the ingenious principle of compressing thermonuclear explosives.

Let us recall that the main idea of ​​a hydrogen bomb is to create conditions for fusion (ultra-high pressure and temperature) through a nuclear explosion. In the “puff” scheme, the nuclear charge is located in the center, and therefore it does not so much compress the deuterium as scatter it outwards - increasing the amount of thermonuclear explosive does not lead to an increase in power - it simply does not have time to detonate. This is precisely what limits the maximum power of this scheme - the most powerful “puff” in the world, the Orange Herald, blown up by the British on May 31, 1957, yielded only 720 kilotons.

It would be ideal if we could make the atomic fuse explode inside, compressing the thermonuclear explosive. But how to do that? Edward Teller put forward a brilliant idea: to compress thermonuclear fuel not with mechanical energy and neutron flux, but with the radiation of the primary atomic fuse.

In Teller's new design, the initiating atomic unit was separated from the thermonuclear unit. When the atomic charge was triggered, X-ray radiation preceded the shock wave and spread along the walls of the cylindrical body, evaporating and turning the polyethylene inner lining of the bomb body into plasma. The plasma, in turn, re-emited softer X-rays, which were absorbed by the outer layers of the inner cylinder of uranium-238 - the “pusher”. The layers began to evaporate explosively (this phenomenon is called ablation). Hot uranium plasma can be compared to the jets of a super-powerful rocket engine, the thrust of which is directed into the cylinder with deuterium. The uranium cylinder collapsed, the pressure and temperature of the deuterium reached a critical level. The same pressure compressed the central plutonium tube to a critical mass, and it detonated. The explosion of the plutonium fuse pressed on the deuterium from the inside, further compressing and heating the thermonuclear explosive, which detonated. An intense stream of neutrons splits the uranium-238 nuclei in the “pusher”, causing a secondary decay reaction. All this managed to happen before the moment when the blast wave from the primary nuclear explosion reached the thermonuclear unit. The calculation of all these events, occurring in billionths of a second, required the brainpower of the strongest mathematicians on the planet. The creators of “Mike” experienced not horror from the 10-megaton explosion, but indescribable delight - they managed not only to understand the processes that in the real world occur only in the cores of stars, but also to experimentally test their theories by setting up their own small star on Earth.

Bravo

Having surpassed the Russians in the beauty of the design, the Americans were unable to make their device compact: they used liquid supercooled deuterium instead of Sakharov’s powdered lithium deuteride. In Los Alamos they reacted to Sakharov’s “puff pastry” with a bit of envy: “instead of a huge cow with a bucket of raw milk, the Russians use a bag of powdered milk.” However, both sides failed to hide secrets from each other. On March 1, 1954, near the Bikini Atoll, the Americans tested a 15-megaton bomb “Bravo” using lithium deuteride, and on November 22, 1955, the first Soviet two-stage thermonuclear bomb RDS-37 with a power of 1.7 megatons exploded over the Semipalatinsk test site, demolishing almost half of the test site. Since then, the design of the thermonuclear bomb has undergone minor changes (for example, a uranium shield appeared between the initiating bomb and the main charge) and has become canonical. And there are no more large-scale mysteries of nature left in the world that could be solved with such a spectacular experiment. Perhaps the birth of a supernova.

On August 12, 1953, the first Soviet hydrogen bomb was tested at the Semipalatinsk test site.

And on January 16, 1963, at the height of the Cold War, Nikita Khrushchev announced to the world that the Soviet Union possesses new weapons of mass destruction in its arsenal. A year and a half earlier, the most powerful hydrogen bomb explosion in the world was carried out in the USSR - a charge with a capacity of over 50 megatons was detonated on Novaya Zemlya. In many ways, it was this statement by the Soviet leader that made the world realize the threat of further escalation of the nuclear arms race: already on August 5, 1963, an agreement was signed in Moscow banning nuclear weapons tests in the atmosphere, outer space and under water.

History of creation

The theoretical possibility of obtaining energy by thermonuclear fusion was known even before World War II, but it was the war and the subsequent arms race that raised the question of creating a technical device for the practical creation of this reaction. It is known that in Germany in 1944, work was carried out to initiate thermonuclear fusion by compressing nuclear fuel using charges of conventional explosives - but they were not successful, since it was not possible to obtain the required temperatures and pressures. The USA and the USSR have been developing thermonuclear weapons since the 40s, almost simultaneously testing the first thermonuclear devices in the early 50s. In 1952, the United States exploded a charge with a yield of 10.4 megatons on the Eniwetak Atoll (which is 450 times more powerful than the bomb dropped on Nagasaki), and in 1953, the USSR tested a device with a yield of 400 kilotons.

The designs of the first thermonuclear devices were poorly suited for actual combat use. For example, the device tested by the United States in 1952 was a ground-based structure the height of a 2-story building and weighing over 80 tons. Liquid thermonuclear fuel was stored in it using a huge refrigeration unit. Therefore, in the future, serial production of thermonuclear weapons was carried out using solid fuel - lithium-6 deuteride. In 1954, the United States tested a device based on it at Bikini Atoll, and in 1955, a new Soviet thermonuclear bomb was tested at the Semipalatinsk test site. In 1957, tests of a hydrogen bomb were carried out in Great Britain. In October 1961, a thermonuclear bomb with a capacity of 58 megatons was detonated in the USSR on Novaya Zemlya - the most powerful bomb ever tested by mankind, which went down in history under the name “Tsar Bomba”.

Further development was aimed at reducing the size of the design of hydrogen bombs to ensure their delivery to the target by ballistic missiles. Already in the 60s, the mass of devices was reduced to several hundred kilograms, and by the 70s, ballistic missiles could carry over 10 warheads at the same time - these are missiles with multiple warheads, each part can hit its own target. Today, the USA, Russia and Great Britain have thermonuclear arsenals; tests of thermonuclear charges were also carried out in China (in 1967) and in France (in 1968).

The principle of operation of a hydrogen bomb

The action of a hydrogen bomb is based on the use of energy released during the thermonuclear fusion reaction of light nuclei. It is this reaction that takes place in the depths of stars, where, under the influence of ultra-high temperatures and enormous pressure, hydrogen nuclei collide and merge into heavier helium nuclei. During the reaction, part of the mass of hydrogen nuclei is converted into a large amount of energy - thanks to this, stars constantly release huge amounts of energy. Scientists copied this reaction using hydrogen isotopes deuterium and tritium, giving it the name “hydrogen bomb.” Initially, liquid isotopes of hydrogen were used to produce charges, and later lithium-6 deuteride, a solid compound of deuterium and an isotope of lithium, was used.

Lithium-6 deuteride is the main component of the hydrogen bomb, thermonuclear fuel. It already stores deuterium, and the lithium isotope serves as the raw material for the formation of tritium. To start a thermonuclear fusion reaction, it is necessary to create high temperatures and pressures, as well as to separate tritium from lithium-6. These conditions are provided as follows.

The shell of the container for thermonuclear fuel is made of uranium-238 and plastic, and a conventional nuclear charge with a power of several kilotons is placed next to the container - it is called a trigger, or initiator charge of a hydrogen bomb. During the explosion of the plutonium initiator charge under the influence of powerful X-ray radiation, the shell of the container turns into plasma, compressing thousands of times, which creates the necessary high pressure and enormous temperature. At the same time, neutrons emitted by plutonium interact with lithium-6, forming tritium. Deuterium and tritium nuclei interact under the influence of ultra-high temperature and pressure, which leads to a thermonuclear explosion.

If you make several layers of uranium-238 and lithium-6 deuteride, then each of them will add its own power to the explosion of a bomb - that is, such a “puff” allows you to increase the power of the explosion almost unlimitedly. Thanks to this, a hydrogen bomb can be made of almost any power, and it will be much cheaper than a conventional nuclear bomb of the same power.

On August 12, 1953, at 7.30 am, the first Soviet hydrogen bomb was tested at the Semipalatinsk test site, which had the service name “Product RDS-6c”. This was the fourth Soviet nuclear weapons test.

The beginning of the first work on the thermonuclear program in the USSR dates back to 1945. Then information was received about research being carried out in the United States on the thermonuclear problem. They were started on the initiative of the American physicist Edward Teller in 1942. The basis was taken by Teller’s concept of thermonuclear weapons, which in the circles of Soviet nuclear scientists was called a “pipe” - a cylindrical container with liquid deuterium, which was supposed to be heated by the explosion of an initiating device such as a conventional atomic bomb. Only in 1950 did the Americans establish that the “pipe” was futile, and they continued to develop other designs. But by this time, Soviet physicists had already independently developed another concept of thermonuclear weapons, which soon - in 1953 - led to success.

An alternative design for a hydrogen bomb was invented by Andrei Sakharov. The bomb was based on the idea of ​​a “puff” and the use of lithium-6 deuteride. Developed at KB-11 (today the city of Sarov, former Arzamas-16, Nizhny Novgorod region), the RDS-6s thermonuclear charge was a spherical system of layers of uranium and thermonuclear fuel, surrounded by a chemical explosive.

Academician Sakharov - deputy and dissidentMay 21 marks the 90th anniversary of the birth of the Soviet physicist, political figure, dissident, one of the creators of the Soviet hydrogen bomb, Nobel Peace Prize laureate academician Andrei Sakharov. He died in 1989 at the age of 68, seven of which Andrei Dmitrievich spent in exile.

To increase the energy release of the charge, tritium was used in its design. The main task in creating such a weapon was to use the energy released during the explosion of an atomic bomb to heat and ignite heavy hydrogen - deuterium, to carry out thermonuclear reactions with the release of energy that can support themselves. To increase the proportion of “burnt” deuterium, Sakharov proposed surrounding the deuterium with a shell of ordinary natural uranium, which was supposed to slow down the expansion and, most importantly, significantly increase the density of deuterium. The phenomenon of ionization compression of thermonuclear fuel, which became the basis of the first Soviet hydrogen bomb, is still called “saccharization.”

Based on the results of work on the first hydrogen bomb, Andrei Sakharov received the title of Hero of Socialist Labor and laureate of the Stalin Prize.

“Product RDS-6s” was made in the form of a transportable bomb weighing 7 tons, which was placed in the bomb hatch of a Tu-16 bomber. For comparison, the bomb created by the Americans weighed 54 tons and was the size of a three-story house.

To assess the destructive effects of the new bomb, a city of industrial and administrative buildings was built at the Semipalatinsk test site. In total, there were 190 different structures on the field. In this test, vacuum intakes of radiochemical samples were used for the first time, which automatically opened under the influence of a shock wave. In total, 500 different measuring, recording and filming devices installed in underground casemates and durable ground structures were prepared for testing the RDS-6s. Aviation technical support for the tests - measuring the pressure of the shock wave on the aircraft in the air at the time of the explosion of the product, taking air samples from the radioactive cloud, and aerial photography of the area was carried out by a special flight unit. The bomb was detonated remotely by sending a signal from a remote control located in the bunker.

It was decided to carry out an explosion on a steel tower 40 meters high, the charge was located at a height of 30 meters. The radioactive soil from previous tests was removed to a safe distance, special structures were built in their own places on old foundations, and a bunker was built 5 meters from the tower to install equipment developed at the Institute of Chemical Physics of the USSR Academy of Sciences that recorded thermonuclear processes.

Military equipment from all branches of the military was installed on the field. During the tests, all experimental structures within a radius of up to four kilometers were destroyed. A hydrogen bomb explosion could completely destroy a city 8 kilometers across. The environmental consequences of the explosion were terrifying: the first explosion accounted for 82% strontium-90 and 75% cesium-137.

The power of the bomb reached 400 kilotons, 20 times more than the first atomic bombs in the USA and USSR.

Destruction of the last nuclear warhead in Semipalatinsk. ReferenceOn May 31, 1995, the last nuclear warhead was destroyed at the former Semipalatinsk test site. The Semipalatinsk test site was created in 1948 specifically to test the first Soviet nuclear device. The test site was located in northeastern Kazakhstan.

The work to create the hydrogen bomb became the world's first intellectual "battle of wits" on a truly global scale. The creation of the hydrogen bomb initiated the emergence of completely new scientific directions - the physics of high-temperature plasma, the physics of ultra-high energy densities, and the physics of anomalous pressures. For the first time in human history, mathematical modeling was used on a large scale.

Work on the “RDS-6s product” created a scientific and technical basis, which was then used in the development of an incomparably more advanced hydrogen bomb of a fundamentally new type - a two-stage hydrogen bomb.

The hydrogen bomb of Sakharov’s design not only became a serious counter-argument in the political confrontation between the USA and the USSR, but also served as the reason for the rapid development of Soviet cosmonautics in those years. It was after successful nuclear tests that the Korolev Design Bureau received an important government task to develop an intercontinental ballistic missile to deliver the created charge to the target. Subsequently, the rocket, called the “seven”, launched the first artificial Earth satellite into space, and it was on it that the first cosmonaut of the planet, Yuri Gagarin, launched.

The material was prepared based on information from open sources

There are a considerable number of different political clubs in the world. The G7, now the G20, BRICS, SCO, NATO, the European Union, to some extent. However, none of these clubs can boast of a unique function - the ability to destroy the world as we know it. The “nuclear club” has similar capabilities.

Today there are 9 countries that have nuclear weapons:

  • Russia;
  • Great Britain;
  • France;
  • India
  • Pakistan;
  • Israel;
  • DPRK.

Countries are ranked as they acquire nuclear weapons in their arsenal. If the list were arranged by the number of warheads, then Russia would be in first place with its 8,000 units, 1,600 of which can be launched even now. The states are only 700 units behind, but they have 320 more charges at hand. “Nuclear club” is a purely relative concept; in fact, there is no club. There are a number of agreements between countries on non-proliferation and reduction of nuclear weapons stockpiles.

The first tests of the atomic bomb, as we know, were carried out by the United States back in 1945. This weapon was tested in the “field” conditions of World War II on residents of the Japanese cities of Hiroshima and Nagasaki. They operate on the principle of division. During the explosion, a chain reaction is triggered, which provokes the fission of nuclei into two, with the accompanying release of energy. Uranium and plutonium are mainly used for this reaction. Our ideas about what nuclear bombs are made of are connected with these elements. Since uranium occurs in nature only as a mixture of three isotopes, of which only one is capable of supporting such a reaction, it is necessary to enrich uranium. The alternative is plutonium-239, which does not occur naturally and must be produced from uranium.

If a fission reaction occurs in a uranium bomb, then a fusion reaction occurs in a hydrogen bomb - this is the essence of how a hydrogen bomb differs from an atomic one. We all know that the sun gives us light, warmth, and one might say life. The same processes that occur in the sun can easily destroy cities and countries. The explosion of a hydrogen bomb is generated by the synthesis of light nuclei, the so-called thermonuclear fusion. This “miracle” is possible thanks to hydrogen isotopes - deuterium and tritium. This is actually why the bomb is called a hydrogen bomb. You can also see the name “thermonuclear bomb”, from the reaction that underlies this weapon.

After the world saw the destructive power of nuclear weapons, in August 1945, the USSR began a race that lasted until its collapse. The United States was the first to create, test and use nuclear weapons, the first to detonate a hydrogen bomb, but the USSR can be credited with the first production of a compact hydrogen bomb, which can be delivered to the enemy on a regular Tu-16. The first US bomb was the size of a three-story house; a hydrogen bomb of that size would be of little use. The Soviets received such weapons already in 1952, while the United States' first "adequate" bomb was adopted only in 1954. If you look back and analyze the explosions in Nagasaki and Hiroshima, you can come to the conclusion that they were not so powerful . Two bombs in total destroyed both cities and killed, according to various sources, up to 220,000 people. Carpet bombing of Tokyo could kill 150-200,000 people a day even without any nuclear weapons. This is due to the low power of the first bombs - only a few tens of kilotons of TNT. Hydrogen bombs were tested with an aim to overcome 1 megaton or more.

The first Soviet bomb was tested with a claim of 3 Mt, but in the end they tested 1.6 Mt.

The most powerful hydrogen bomb was tested by the Soviets in 1961. Its capacity reached 58-75 Mt, with the declared 51 Mt. “Tsar” plunged the world into a slight shock, in the literal sense. The shock wave circled the planet three times. There was not a single hill left at the test site (Novaya Zemlya), the explosion was heard at a distance of 800 km. The fireball reached a diameter of almost 5 km, the “mushroom” grew by 67 km, and the diameter of its cap was almost 100 km. The consequences of such an explosion in a large city are hard to imagine. According to many experts, it was the test of a hydrogen bomb of such power (the States at that time had bombs four times less powerful) that became the first step towards signing various treaties banning nuclear weapons, their testing and reducing production. For the first time, the world began to think about its own security, which was truly at risk.

As mentioned earlier, the principle of operation of a hydrogen bomb is based on a fusion reaction. Thermonuclear fusion is the process of fusion of two nuclei into one, with the formation of a third element, the release of a fourth and energy. The forces that repel nuclei are enormous, so in order for the atoms to come close enough to merge, the temperature must be simply enormous. Scientists have been puzzling over cold thermonuclear fusion for centuries, trying, so to speak, to reset the fusion temperature to room temperature, ideally. In this case, humanity will have access to the energy of the future. As for the current thermonuclear reaction, to start it you still need to light a miniature sun here on Earth - bombs usually use a uranium or plutonium charge to start the fusion.

In addition to the consequences described above from the use of a bomb of tens of megatons, a hydrogen bomb, like any nuclear weapon, has a number of consequences from its use. Some people tend to believe that the hydrogen bomb is a “cleaner weapon” than a conventional bomb. Perhaps this has something to do with the name. People hear the word “water” and think that it has something to do with water and hydrogen, and therefore the consequences are not so dire. In fact, this is certainly not the case, because the action of the hydrogen bomb is based on extremely radioactive substances. It is theoretically possible to make a bomb without a uranium charge, but this is impractical due to the complexity of the process, so the pure fusion reaction is “diluted” with uranium to increase power. At the same time, the amount of radioactive fallout increases to 1000%. Everything that falls into the fireball will be destroyed, the area within the affected radius will become uninhabitable for people for decades. Radioactive fallout can harm the health of people hundreds and thousands of kilometers away. Specific numbers and the area of ​​infection can be calculated by knowing the strength of the charge.

However, the destruction of cities is not the worst thing that can happen “thanks” to weapons of mass destruction. After a nuclear war, the world will not be completely destroyed. Thousands of large cities, billions of people will remain on the planet, and only a small percentage of territories will lose their “livable” status. In the long term, the entire world will be at risk due to the so-called “nuclear winter.” Detonation of the “club’s” nuclear arsenal could trigger the release of enough substance (dust, soot, smoke) into the atmosphere to “reduce” the brightness of the sun. The shroud, which could spread across the entire planet, would destroy crops for several years to come, causing famine and inevitable population decline. There has already been a “year without summer” in history, after a major volcanic eruption in 1816, so nuclear winter looks more than possible. Again, depending on how the war proceeds, we may end up with the following types of global climate change:

  • a cooling of 1 degree will pass unnoticed;
  • nuclear autumn - cooling by 2-4 degrees, crop failures and increased formation of hurricanes are possible;
  • an analogue of the “year without summer” - when the temperature dropped significantly, by several degrees for a year;
  • Little Ice Age – temperatures may drop by 30–40 degrees for a significant period of time and will be accompanied by depopulation of a number of northern zones and crop failures;
  • ice age - the development of the Little Ice Age, when the reflection of sunlight from the surface can reach a certain critical level and the temperature will continue to fall, the only difference is the temperature;
  • irreversible cooling is a very sad version of the Ice Age, which, under the influence of many factors, will turn the Earth into a new planet.

The nuclear winter theory has been constantly criticized, and its implications seem a bit overblown. However, there is no need to doubt its inevitable offensive in any global conflict involving the use of hydrogen bombs.

The Cold War is long behind us, and therefore nuclear hysteria can only be seen in old Hollywood films and on the covers of rare magazines and comics. Despite this, we may be on the verge of a, albeit small, but serious nuclear conflict. All this thanks to the rocket lover and hero of the fight against US imperialist ambitions - Kim Jong-un. The DPRK hydrogen bomb is still a hypothetical object; only indirect evidence speaks of its existence. Of course, the North Korean government constantly reports that they have managed to make new bombs, but no one has seen them live yet. Naturally, the States and their allies - Japan and South Korea - are a little more concerned about the presence, even hypothetical, of such weapons in the DPRK. The reality is that at the moment the DPRK does not have enough technology to successfully attack the United States, which they announce to the whole world every year. Even an attack on neighboring Japan or the South may not be very successful, if at all, but every year the danger of a new conflict on the Korean Peninsula is growing.