A message on the topic of converting expressions containing logarithms. Properties of logarithms and examples of their solutions

Tasks whose solution is converting logarithmic expressions, are quite common on the Unified State Examination.

In order to successfully cope with them with minimal time, in addition to the basic logarithmic identities, you need to know and correctly use some more formulas.

This is: a log a b = b, where a, b > 0, a ≠ 1 (It follows directly from the definition of the logarithm).

log a b = log c b / log c a or log a b = 1/log b a
where a, b, c > 0; a, c ≠ 1.

log a m b n = (m/n) log |a| |b|
where a, b > 0, a ≠ 1, m, n Є R, n ≠ 0.

a log c b = b log c a
where a, b, c > 0 and a, b, c ≠ 1

To show the validity of the fourth equality, let’s take the logarithm of the left and right sides to base a. We get log a (a log with b) = log a (b log with a) or log with b = log with a · log a b; log c b = log c a · (log c b / log c a); log with b = log with b.

We have proven the equality of logarithms, which means that the expressions under the logarithms are also equal. Formula 4 has been proven.

Example 1.

Calculate 81 log 27 5 log 5 4 .

Solution.

81 = 3 4 , 27 = 3 3 .

log 27 5 = 1/3 log 3 5, log 5 4 = log 3 4 / log 3 5. Therefore,

log 27 5 log 5 4 = 1/3 log 3 5 (log 3 4 / log 3 5) = 1/3 log 3 4.

Then 81 log 27 5 log 5 4 = (3 4) 1/3 log 3 4 = (3 log 3 4) 4/3 = (4) 4/3 = 4 3 √4.

You can complete the following task yourself.

Calculate (8 log 2 3 + 3 1/ log 2 3) - log 0.2 5.

As a hint, 0.2 = 1/5 = 5 -1 ; log 0.2 5 = -1.

Answer: 5.

Example 2.

Calculate (√11) log √3 9- log 121 81 .

Solution.

Let's change the expressions: 9 = 3 2, √3 = 3 1/2, log √3 9 = 4,

121 = 11 2, 81 = 3 4, log 121 81 = 2 log 11 3 (formula 3 was used).

Then (√11) log √3 9- log 121 81 = (11 1/2) 4-2 log 11 3 = (11) 2- log 11 3 = 11 2 / (11) log 11 3 = 11 2 / ( 11 log 11 3) = 121/3.

Example 3.

Calculate log 2 24 / log 96 2 - log 2 192 / log 12 2.

Solution.

We replace the logarithms contained in the example with logarithms with base 2.

log 96 2 = 1/log 2 96 = 1/log 2 (2 5 3) = 1/(log 2 2 5 + log 2 3) = 1/(5 + log 2 3);

log 2 192 = log 2 (2 6 3) = (log 2 2 6 + log 2 3) = (6 + log 2 3);

log 2 24 = log 2 (2 3 3) = (log 2 2 3 + log 2 3) = (3 + log 2 3);

log 12 2 = 1/log 2 12 = 1/log 2 (2 2 3) = 1/(log 2 2 2 + log 2 3) = 1/(2 + log 2 3).

Then log 2 24 / log 96 2 – log 2 192 / log 12 2 = (3 + log 2 3) / (1/(5 + log 2 3)) – ((6 + log 2 3) / (1/( 2 + log 2 3)) =

= (3 + log 2 3) · (5 + log 2 3) – (6 + log 2 3)(2 + log 2 3).

After opening the parentheses and bringing similar terms, we get the number 3. (When simplifying the expression, we can denote log 2 3 by n and simplify the expression

(3 + n) · (5 + n) – (6 + n)(2 + n)).

Answer: 3.

You can complete the following task yourself:

Calculate (log 3 4 + log 4 3 + 2) log 3 16 log 2 144 3.

Here it is necessary to make the transition to base 3 logarithms and factorization of large numbers into prime factors.

Answer:1/2

Example 4.

Given three numbers A = 1/(log 3 0.5), B = 1/(log 0.5 3), C = log 0.5 12 – log 0.5 3. Arrange them in ascending order.

Solution.

Let's transform the numbers A = 1/(log 3 0.5) = log 0.5 3; C = log 0.5 12 – log 0.5 3 = log 0.5 12/3 = log 0.5 4 = -2.

Let's compare them

log 0.5 3 > log 0.5 4 = -2 and log 0.5 3< -1 = log 0,5 2, так как функция у = log 0,5 х – убывающая.

Or 2< log 0,5 3 < -1. Тогда -1 < 1/(log 0,5 3) < -1/2.

Answer. Therefore, the order of placing the numbers is: C; A; IN.

Example 5.

How many integers are in the interval (log 3 1 / 16 ; log 2 6 48).

Solution.

Let us determine between which powers of the number 3 the number 1/16 is located. We get 1/27< 1 / 16 < 1 / 9 .

Since the function y = log 3 x is increasing, then log 3 (1 / 27)< log 3 (1 / 16) < log 3 (1 / 9); -3 < log 3 (1 / 16) < -2.

log 6 48 = log 6 (36 4 / 3) = log 6 36 + log 6 (4 / 3) = 2 + log 6 (4 / 3). Let's compare log 6 (4 / 3) and 1 / 5. And for this we compare the numbers 4/3 and 6 1/5. Let's raise both numbers to the 5th power. We get (4 / 3) 5 = 1024 / 243 = 4 52 / 243< 6. Следовательно,

log 6 (4 / 3)< 1 / 5 . 2 < log 6 48 < 2 1 / 5 . Числа, входящие в двойное неравенство, положительные. Их можно возводить в квадрат. Знаки неравенства при этом не изменятся. Тогда 4 < log 6 2 48 < 4 21 / 25.

Therefore, the interval (log 3 1 / 16 ; log 6 48) includes the interval [-2; 4] and the integers -2 are placed on it; -1; 0; 1; 2; 3; 4.

Answer: 7 integers.

Example 6.

Calculate 3 lglg 2/ lg 3 - lg20.

Solution.

3 lg lg 2/ lg 3 = (3 1/ lg3) lg lg 2 = (3 lо g 3 10) lg lg 2 = 10 lg lg 2 = lg2.

Then 3 lglg2/lg3 - lg 20 = lg 2 – lg 20 = lg 0.1 = -1.

Answer: -1.

Example 7.

It is known that log 2 (√3 + 1) + log 2 (√6 – 2) = A. Find log 2 (√3 –1) + log 2 (√6 + 2).

Solution.

Numbers (√3 + 1) and (√3 – 1); (√6 – 2) and (√6 + 2) are conjugate.

Let us carry out the following transformation of expressions

√3 – 1 = (√3 – 1) · (√3 + 1)) / (√3 + 1) = 2/(√3 + 1);

√6 + 2 = (√6 + 2) · (√6 – 2)) / (√6 – 2) = 2/(√6 – 2).

Then log 2 (√3 – 1) + log 2 (√6 + 2) = log 2 (2/(√3 + 1)) + log 2 (2/(√6 – 2)) =

Log 2 2 – log 2 (√3 + 1) + log 2 2 – log 2 (√6 – 2) = 1 – log 2 (√3 + 1) + 1 – log 2 (√6 – 2) =

2 – log 2 (√3 + 1) – log 2 (√6 – 2) = 2 – A.

Answer: 2 – A.

Example 8.

Simplify and find the approximate value of the expression (log 3 2 log 4 3 log 5 4 log 6 5 ... log 10 9.

Solution.

Let us reduce all logarithms to a common base 10.

(log 3 2 log 4 3 log 5 4 log 6 5 ... log 10 9 = (lg 2 / lg 3) (lg 3 / lg 4) (lg 4 / lg 5) (lg 5 / lg 6) · … · (lg 8 / lg 9) · lg 9 = lg 2 ≈ 0.3010 (The approximate value of lg 2 can be found using a table, slide rule or calculator).

Answer: 0.3010.

Example 9.

Calculate log a 2 b 3 √(a 11 b -3) if log √ a b 3 = 1. (In this example, a 2 b 3 is the base of the logarithm).

Solution.

If log √ a b 3 = 1, then 3/(0.5 log a b = 1. And log a b = 1/6.

Then log a 2 b 3√(a 11 b -3) = 1/2 log a 2 b 3 (a 11 b -3) = log a (a 11 b -3) / (2log a (a 2 b 3) ) = (log a a 11 + log a b -3) / (2(log a a 2 + log a b 3)) = (11 – 3log a b) / (2(2 + 3log a b)) Considering that that log a b = 1/6 we get (11 – 3 1 / 6) / (2(2 + 3 1 / 6)) = 10.5/5 = 2.1.

Answer: 2.1.

You can complete the following task yourself:

Calculate log √3 6 √2.1 if log 0.7 27 = a.

Answer: (3 + a) / (3a).

Example 10.

Calculate 6.5 4/ log 3 169 · 3 1/ log 4 13 + log125.

Solution.

6.5 4/ log 3 169 · 3 1/ log 4 13 + log 125 = (13/2) 4/2 log 3 13 · 3 2/ log 2 13 + 2log 5 5 3 = (13/2) 2 log 13 3 3 2 log 13 2 + 6 = (13 log 13 3 / 2 log 13 3) 2 (3 log 13 2) 2 + 6 = (3/2 log 13 3) 2 (3 log 13 2) 2 + 6 = (3 2 /(2 log 13 3) 2) · (2 ​​log 13 3) 2 + 6.

(2 log 13 3 = 3 log 13 2 (formula 4))

We get 9 + 6 = 15.

Answer: 15.

Still have questions? Not sure how to find the value of a logarithmic expression?
To get help from a tutor, register.
The first lesson is free!

website, when copying material in full or in part, a link to the source is required.

Tasks whose solution is converting logarithmic expressions, are quite common on the Unified State Examination.

In order to successfully cope with them with minimal time, in addition to the basic logarithmic identities, you need to know and correctly use some more formulas.

This is: a log a b = b, where a, b > 0, a ≠ 1 (It follows directly from the definition of the logarithm).

log a b = log c b / log c a or log a b = 1/log b a
where a, b, c > 0; a, c ≠ 1.

log a m b n = (m/n) log |a| |b|
where a, b > 0, a ≠ 1, m, n Є R, n ≠ 0.

a log c b = b log c a
where a, b, c > 0 and a, b, c ≠ 1

To show the validity of the fourth equality, let’s take the logarithm of the left and right sides to base a. We get log a (a log with b) = log a (b log with a) or log with b = log with a · log a b; log c b = log c a · (log c b / log c a); log with b = log with b.

We have proven the equality of logarithms, which means that the expressions under the logarithms are also equal. Formula 4 has been proven.

Example 1.

Calculate 81 log 27 5 log 5 4 .

Solution.

81 = 3 4 , 27 = 3 3 .

log 27 5 = 1/3 log 3 5, log 5 4 = log 3 4 / log 3 5. Therefore,

log 27 5 log 5 4 = 1/3 log 3 5 (log 3 4 / log 3 5) = 1/3 log 3 4.

Then 81 log 27 5 log 5 4 = (3 4) 1/3 log 3 4 = (3 log 3 4) 4/3 = (4) 4/3 = 4 3 √4.

You can complete the following task yourself.

Calculate (8 log 2 3 + 3 1/ log 2 3) - log 0.2 5.

As a hint, 0.2 = 1/5 = 5 -1 ; log 0.2 5 = -1.

Answer: 5.

Example 2.

Calculate (√11) log √3 9- log 121 81 .

Solution.

Let's change the expressions: 9 = 3 2, √3 = 3 1/2, log √3 9 = 4,

121 = 11 2, 81 = 3 4, log 121 81 = 2 log 11 3 (formula 3 was used).

Then (√11) log √3 9- log 121 81 = (11 1/2) 4-2 log 11 3 = (11) 2- log 11 3 = 11 2 / (11) log 11 3 = 11 2 / ( 11 log 11 3) = 121/3.

Example 3.

Calculate log 2 24 / log 96 2 - log 2 192 / log 12 2.

Solution.

We replace the logarithms contained in the example with logarithms with base 2.

log 96 2 = 1/log 2 96 = 1/log 2 (2 5 3) = 1/(log 2 2 5 + log 2 3) = 1/(5 + log 2 3);

log 2 192 = log 2 (2 6 3) = (log 2 2 6 + log 2 3) = (6 + log 2 3);

log 2 24 = log 2 (2 3 3) = (log 2 2 3 + log 2 3) = (3 + log 2 3);

log 12 2 = 1/log 2 12 = 1/log 2 (2 2 3) = 1/(log 2 2 2 + log 2 3) = 1/(2 + log 2 3).

Then log 2 24 / log 96 2 – log 2 192 / log 12 2 = (3 + log 2 3) / (1/(5 + log 2 3)) – ((6 + log 2 3) / (1/( 2 + log 2 3)) =

= (3 + log 2 3) · (5 + log 2 3) – (6 + log 2 3)(2 + log 2 3).

After opening the parentheses and bringing similar terms, we get the number 3. (When simplifying the expression, we can denote log 2 3 by n and simplify the expression

(3 + n) · (5 + n) – (6 + n)(2 + n)).

Answer: 3.

You can complete the following task yourself:

Calculate (log 3 4 + log 4 3 + 2) log 3 16 log 2 144 3.

Here it is necessary to make the transition to base 3 logarithms and factorization of large numbers into prime factors.

Answer:1/2

Example 4.

Given three numbers A = 1/(log 3 0.5), B = 1/(log 0.5 3), C = log 0.5 12 – log 0.5 3. Arrange them in ascending order.

Solution.

Let's transform the numbers A = 1/(log 3 0.5) = log 0.5 3; C = log 0.5 12 – log 0.5 3 = log 0.5 12/3 = log 0.5 4 = -2.

Let's compare them

log 0.5 3 > log 0.5 4 = -2 and log 0.5 3< -1 = log 0,5 2, так как функция у = log 0,5 х – убывающая.

Or 2< log 0,5 3 < -1. Тогда -1 < 1/(log 0,5 3) < -1/2.

Answer. Therefore, the order of placing the numbers is: C; A; IN.

Example 5.

How many integers are in the interval (log 3 1 / 16 ; log 2 6 48).

Solution.

Let us determine between which powers of the number 3 the number 1/16 is located. We get 1/27< 1 / 16 < 1 / 9 .

Since the function y = log 3 x is increasing, then log 3 (1 / 27)< log 3 (1 / 16) < log 3 (1 / 9); -3 < log 3 (1 / 16) < -2.

log 6 48 = log 6 (36 4 / 3) = log 6 36 + log 6 (4 / 3) = 2 + log 6 (4 / 3). Let's compare log 6 (4 / 3) and 1 / 5. And for this we compare the numbers 4/3 and 6 1/5. Let's raise both numbers to the 5th power. We get (4 / 3) 5 = 1024 / 243 = 4 52 / 243< 6. Следовательно,

log 6 (4 / 3)< 1 / 5 . 2 < log 6 48 < 2 1 / 5 . Числа, входящие в двойное неравенство, положительные. Их можно возводить в квадрат. Знаки неравенства при этом не изменятся. Тогда 4 < log 6 2 48 < 4 21 / 25.

Therefore, the interval (log 3 1 / 16 ; log 6 48) includes the interval [-2; 4] and the integers -2 are placed on it; -1; 0; 1; 2; 3; 4.

Answer: 7 integers.

Example 6.

Calculate 3 lglg 2/ lg 3 - lg20.

Solution.

3 lg lg 2/ lg 3 = (3 1/ lg3) lg lg 2 = (3 lо g 3 10) lg lg 2 = 10 lg lg 2 = lg2.

Then 3 lglg2/lg3 - lg 20 = lg 2 – lg 20 = lg 0.1 = -1.

Answer: -1.

Example 7.

It is known that log 2 (√3 + 1) + log 2 (√6 – 2) = A. Find log 2 (√3 –1) + log 2 (√6 + 2).

Solution.

Numbers (√3 + 1) and (√3 – 1); (√6 – 2) and (√6 + 2) are conjugate.

Let us carry out the following transformation of expressions

√3 – 1 = (√3 – 1) · (√3 + 1)) / (√3 + 1) = 2/(√3 + 1);

√6 + 2 = (√6 + 2) · (√6 – 2)) / (√6 – 2) = 2/(√6 – 2).

Then log 2 (√3 – 1) + log 2 (√6 + 2) = log 2 (2/(√3 + 1)) + log 2 (2/(√6 – 2)) =

Log 2 2 – log 2 (√3 + 1) + log 2 2 – log 2 (√6 – 2) = 1 – log 2 (√3 + 1) + 1 – log 2 (√6 – 2) =

2 – log 2 (√3 + 1) – log 2 (√6 – 2) = 2 – A.

Answer: 2 – A.

Example 8.

Simplify and find the approximate value of the expression (log 3 2 log 4 3 log 5 4 log 6 5 ... log 10 9.

Solution.

Let us reduce all logarithms to a common base 10.

(log 3 2 log 4 3 log 5 4 log 6 5 ... log 10 9 = (lg 2 / lg 3) (lg 3 / lg 4) (lg 4 / lg 5) (lg 5 / lg 6) · … · (lg 8 / lg 9) · lg 9 = lg 2 ≈ 0.3010 (The approximate value of lg 2 can be found using a table, slide rule or calculator).

Answer: 0.3010.

Example 9.

Calculate log a 2 b 3 √(a 11 b -3) if log √ a b 3 = 1. (In this example, a 2 b 3 is the base of the logarithm).

Solution.

If log √ a b 3 = 1, then 3/(0.5 log a b = 1. And log a b = 1/6.

Then log a 2 b 3√(a 11 b -3) = 1/2 log a 2 b 3 (a 11 b -3) = log a (a 11 b -3) / (2log a (a 2 b 3) ) = (log a a 11 + log a b -3) / (2(log a a 2 + log a b 3)) = (11 – 3log a b) / (2(2 + 3log a b)) Considering that that log a b = 1/6 we get (11 – 3 1 / 6) / (2(2 + 3 1 / 6)) = 10.5/5 = 2.1.

Answer: 2.1.

You can complete the following task yourself:

Calculate log √3 6 √2.1 if log 0.7 27 = a.

Answer: (3 + a) / (3a).

Example 10.

Calculate 6.5 4/ log 3 169 · 3 1/ log 4 13 + log125.

Solution.

6.5 4/ log 3 169 · 3 1/ log 4 13 + log 125 = (13/2) 4/2 log 3 13 · 3 2/ log 2 13 + 2log 5 5 3 = (13/2) 2 log 13 3 3 2 log 13 2 + 6 = (13 log 13 3 / 2 log 13 3) 2 (3 log 13 2) 2 + 6 = (3/2 log 13 3) 2 (3 log 13 2) 2 + 6 = (3 2 /(2 log 13 3) 2) · (2 ​​log 13 3) 2 + 6.

(2 log 13 3 = 3 log 13 2 (formula 4))

We get 9 + 6 = 15.

Answer: 15.

Still have questions? Not sure how to find the value of a logarithmic expression?
To get help from a tutor -.
The first lesson is free!

blog.site, when copying material in full or in part, a link to the original source is required.

Maintaining your privacy is important to us. For this reason, we have developed a Privacy Policy that describes how we use and store your information. Please review our privacy practices and let us know if you have any questions.

Collection and use of personal information

Personal information refers to data that can be used to identify or contact a specific person.

You may be asked to provide your personal information at any time when you contact us.

Below are some examples of the types of personal information we may collect and how we may use such information.

What personal information do we collect:

  • When you submit an application on the site, we may collect various information, including your name, telephone number, email address, etc.

How we use your personal information:

  • The personal information we collect allows us to contact you with unique offers, promotions and other events and upcoming events.
  • From time to time, we may use your personal information to send important notices and communications.
  • We may also use personal information for internal purposes, such as conducting audits, data analysis and various research in order to improve the services we provide and provide you with recommendations regarding our services.
  • If you participate in a prize draw, contest or similar promotion, we may use the information you provide to administer such programs.

Disclosure of information to third parties

We do not disclose the information received from you to third parties.

Exceptions:

  • If necessary - in accordance with the law, judicial procedure, in legal proceedings, and/or on the basis of public requests or requests from government bodies in the Russian Federation - to disclose your personal information. We may also disclose information about you if we determine that such disclosure is necessary or appropriate for security, law enforcement, or other public importance purposes.
  • In the event of a reorganization, merger, or sale, we may transfer the personal information we collect to the applicable successor third party.

Protection of personal information

We take precautions - including administrative, technical and physical - to protect your personal information from loss, theft, and misuse, as well as unauthorized access, disclosure, alteration and destruction.

Respecting your privacy at the company level

To ensure that your personal information is secure, we communicate privacy and security standards to our employees and strictly enforce privacy practices.

Lesson type: lesson of generalization and systematization of knowledge

Goals:

  • update students' knowledge about logarithms and their properties as part of general repetition and preparation for the Unified State Exam;
  • promote the development of students’ mental activity, skills in applying theoretical knowledge when performing exercises;
  • promote the development of students’ personal qualities, self-control skills and self-assessment of their activities; cultivate hard work, patience, perseverance, and independence.

Equipment: computer, projector, presentation (Annex 1), cards with homework (you can attach a file with the assignment in the electronic diary).

During the classes

I. Organizational moment. Greetings, get ready for the lesson.

II. Discussion of homework.

III. State the topic and purpose of the lesson. Motivation.(Slide 1) Presentation.

We continue our general review of the mathematics course in preparation for the Unified State Exam. And today in lesson we will talk about logarithms and their properties.

Tasks for calculating logarithms and converting logarithmic expressions are necessarily present in control and measurement materials of both the basic and profile levels. Therefore, the goal of our lesson is to restore ideas about the meaning of the concept “logarithm” and update the skills of converting logarithmic expressions. Write down the topic of the lesson in your notebooks.

IV. Updating knowledge.

1. /Orally/ First, let's remember what is called a logarithm. (Slide 2)

(The logarithm of a positive number b to base a (where a > 0, a?1) is the exponent to which the number a must be raised to obtain the number b)

Log a b = n<->a n = b, (a> 0, a 1, b> 0)

So, “LOGARITHM” is an “EXPONSOR”!

(Slide 3) Then a n = b can be rewritten in the form = b – basic logarithmic identity.

If the base a = 10, then the logarithm is called decimal and is denoted lgb.

If a = e, then the logarithm is called natural and is denoted lnb.

2. /In writing/ (Slide 4) Fill in the blanks to get the correct equations:

Log? x + Log a ? =Log? (?y)

Log a? - Log? y = Log ? (x/?)

Log a x ? = pLog? (?)

Examination:

1; 1; a,y,x; x,a,a,y; p,a,x.

These are properties of logarithms. And another group of properties: (Slide 5)

Examination:

a,1,n,x; n,x,p,a; x,b,a,y; a,x,b; a,1,b.

V. Oral work

(Slide 6) No. 1. Calculate:

a B C D) ; d) .

Answers : a) 4; b) – 2; at 2; d) 7; e) 27.

(Slide 7) No. 2. Find X:

A) ; b) (Answers: a) 1/4; b) 9).

No. 3. Does it make sense to consider such a logarithm:

A) ; b) ; V) ? (No)

VI. Independent work in groups, strong students - consultants. (Slide 8)

No. 1. Calculate: .

#2: Simplify:

No. 3. Find the value of the expression if

No. 4. Simplify the expression:

No. 5. Calculate:

No. 6. Calculate:

No. 7. Calculate:

No. 8. Calculate:

After completion, check and discussion using the prepared solution or using a document camera.

VII. Solving a task of increased complexity(strong student on the board, the rest in notebooks) (Slide 9)

Find the meaning of the expression:

VIII. Homework (on cards) is differentiated.(Slide 10)

No. 1. Calculate:

Instructions

Write the given logarithmic expression. If the expression uses the logarithm of 10, then its notation is shortened and looks like this: lg b is the decimal logarithm. If the logarithm has the number e as its base, then write the expression: ln b – natural logarithm. It is understood that the result of any is the power to which the base number must be raised to obtain the number b.

When finding the sum of two functions, you simply need to differentiate them one by one and add the results: (u+v)" = u"+v";

When finding the derivative of the product of two functions, it is necessary to multiply the derivative of the first function by the second and add the derivative of the second function multiplied by the first function: (u*v)" = u"*v+v"*u;

In order to find the derivative of the quotient of two functions, it is necessary to subtract from the product of the derivative of the dividend multiplied by the divisor function the product of the derivative of the divisor multiplied by the function of the dividend, and divide all this by the divisor function squared. (u/v)" = (u"*v-v"*u)/v^2;

If a complex function is given, then it is necessary to multiply the derivative of the internal function and the derivative of the external one. Let y=u(v(x)), then y"(x)=y"(u)*v"(x).

Using the results obtained above, you can differentiate almost any function. So let's look at a few examples:

y=x^4, y"=4*x^(4-1)=4*x^3;

y=2*x^3*(e^x-x^2+6), y"=2*(3*x^2*(e^x-x^2+6)+x^3*(e^x-2 *x));
There are also problems involving calculating the derivative at a point. Let the function y=e^(x^2+6x+5) be given, you need to find the value of the function at the point x=1.
1) Find the derivative of the function: y"=e^(x^2-6x+5)*(2*x +6).

2) Calculate the value of the function at a given point y"(1)=8*e^0=8

Video on the topic

Helpful advice

Learn the table of elementary derivatives. This will significantly save time.

Sources:

  • derivative of a constant

So, what is the difference between an irrational equation and a rational one? If the unknown variable is under the square root sign, then the equation is considered irrational.

Instructions

The main method for solving such equations is the method of constructing both sides equations into a square. However. this is natural, the first thing you need to do is get rid of the sign. This method is not technically difficult, but sometimes it can lead to trouble. For example, the equation is v(2x-5)=v(4x-7). By squaring both sides you get 2x-5=4x-7. Solving such an equation is not difficult; x=1. But the number 1 will not be given equations. Why? Substitute one into the equation instead of the value of x. And the right and left sides will contain expressions that do not make sense, that is. This value is not valid for a square root. Therefore, 1 is an extraneous root, and therefore this equation has no roots.

So, an irrational equation is solved using the method of squaring both its sides. And having solved the equation, it is necessary to cut off extraneous roots. To do this, substitute the found roots into the original equation.

Consider another one.
2х+vх-3=0
Of course, this equation can be solved using the same equation as the previous one. Move Compounds equations, which do not have a square root, to the right side and then use the squaring method. solve the resulting rational equation and roots. But also another, more elegant one. Enter a new variable; vх=y. Accordingly, you will receive an equation of the form 2y2+y-3=0. That is, an ordinary quadratic equation. Find its roots; y1=1 and y2=-3/2. Next, solve two equations vх=1; vх=-3/2. The second equation has no roots; from the first we find that x=1. Don't forget to check the roots.

Solving identities is quite simple. To do this, it is necessary to carry out identical transformations until the set goal is achieved. Thus, with the help of simple arithmetic operations, the problem posed will be solved.

You will need

  • - paper;
  • - pen.

Instructions

The simplest of such transformations are algebraic abbreviated multiplications (such as the square of the sum (difference), difference of squares, sum (difference), cube of the sum (difference)). In addition, there are many trigonometric formulas, which are essentially the same identities.

Indeed, the square of the sum of two terms is equal to the square of the first plus twice the product of the first by the second and plus the square of the second, that is, (a+b)^2= (a+b)(a+b)=a^2+ab +ba+b ^2=a^2+2ab+b^2.

Simplify both

General principles of the solution

Repeat from a textbook on mathematical analysis or higher mathematics what a definite integral is. As is known, the solution to a definite integral is a function whose derivative will give an integrand. This function is called antiderivative. Based on this principle, the main integrals are constructed.
Determine by the type of the integrand which of the table integrals is suitable in this case. It is not always possible to determine this immediately. Often, the tabular form becomes noticeable only after several transformations to simplify the integrand.

Variable Replacement Method

If the integrand is a trigonometric function whose argument is a polynomial, then try using the change of variables method. In order to do this, replace the polynomial in the argument of the integrand with some new variable. Based on the relationship between the new and old variables, determine the new limits of integration. By differentiating this expression, find the new differential in . Thus, you will get a new form of the previous integral, close or even corresponding to some tabular one.

Solving integrals of the second kind

If the integral is an integral of the second kind, a vector form of the integrand, then you will need to use the rules for the transition from these integrals to scalar ones. One such rule is the Ostrogradsky-Gauss relation. This law allows us to move from the rotor flux of a certain vector function to the triple integral over the divergence of a given vector field.

Substitution of integration limits

After finding the antiderivative, it is necessary to substitute the limits of integration. First, substitute the value of the upper limit into the expression for the antiderivative. You will get some number. Next, subtract from the resulting number another number obtained from the lower limit into the antiderivative. If one of the limits of integration is infinity, then when substituting it into the antiderivative function, it is necessary to go to the limit and find what the expression tends to.
If the integral is two-dimensional or three-dimensional, then you will have to represent the limits of integration geometrically to understand how to evaluate the integral. Indeed, in the case of, say, a three-dimensional integral, the limits of integration can be entire planes that limit the volume being integrated.