С чем связано изменение внутренней энергии тела. Внутренняя энергия

Внутренняя энергия тела не является какой-то постоянной величиной. У одного и того же тела она может изменяться.

При повышении температуры внутренняя энергия тела увеличивается , так как увеличивается средняя скорость движения молекул.

Следовательно, возрастает кинетическая энергия молекул этого тела. С понижением температуры, наоборот, внутренняя энергия тела уменьшается .

Таким образом, внутренняя энергия тела меняется при изменении скорости движения молекул .

Попытаемся выяснить, каким способом можно увеличить или уменьшить скорость движения молекул. Для этого проделаем следующий опыт. Укрепим тонкостенную латунную трубку на подставке (рис. 3). Нальём в трубку немного эфира и закроем пробкой. Затем трубку обовьём верёвкой и начнём быстро двигать её то в одну сторону, то в другую. Через некоторое время эфир закипит, и пар вытолкнет пробку. Опыт показывает, что внутренняя энергия эфира увеличилась: ведь он нагрелся и даже закипел.

Рис. 3. Увеличение внутренней энергии тела при совершении работы над ним

Увеличение внутренней энергии произошло в результате совершения работы при натирании трубки верёвкой.

Нагревание тел происходит также при ударах, разгибании и сгибании, т. е. при деформации. Внутренняя энергия тела во всех приведённых примерах увеличивается.

Следовательно, внутреннюю энергию тела можно увеличить, совершая над телом работу .

Если же работу совершает само тело, то его внутренняя, энергия уменьшается .

Проделаем следующий опыт.

В толстостенный стеклянный сосуд, закрытый пробкой, накачаем воздух через специальное отверстие в ней (рис. 4).

Рис. 4. Уменьшение внутренней энергии тела при совершении работы самим телом

Через некоторое время пробка выскочит из сосуда. В момент, когда пробка выскакивает из сосуда, образуется туман. Его появление означает, что воздух в сосуде стал холоднее. Находящийся в сосуде сжатый воздух, выталкивая пробку, совершает работу. Эту работу он совершает за счёт своей внутренней энергии, которая при этом уменьшается. Судить об уменьшении внутренней энергии можно по охлаждению воздуха в сосуде. Итак, внутреннюю энергию тела можно изменить путём совершения работы .

Внутреннюю энергию тела можно изменить и другим способом, без совершения работы. Например, вода в чайнике, поставленном на плиту, закипает. Воздух и различные предметы в комнате нагреваются от радиатора центрального отопления, крыши домов нагреваются лучами солнца и т. п. Во всех этих случаях повышается температура тел, а значит, увеличивается их внутренняя энергия. Но при этом работа не совершается.

Значит, изменение внутренней энергии может происходить не только в результате совершения работы .

Как можно объяснить увеличение внутренней энергии в этих случаях?

Рассмотрим следующий пример.

Опустим в стакан с горячей водой металлическую спицу. Кинетическая энергия молекул горячей воды больше кинетической энергии частиц холодного металла. Молекулы горячей воды при взаимодействии с частицами холодного металла будут передавать им часть своей кинетической энергии. В результате этого энергия молекул воды в среднем будет уменьшаться, а энергия частиц металла будет увеличиваться. Температура воды уменьшится, а температура металлической спицы постепенно увеличится. Через некоторое время их температуры выравняются. Этот опыт демонстрирует изменение внутренней энергии тел.

Итак, внутреннюю энергию тел можно изменить путём теплопередачи .

    Процесс изменения внутренней энергии без совершения работы над телом или самим телом называется теплопередачей.

Теплопередача всегда происходит в определённом направлении: от тел с более высокой температурой к телам с более низкой.

Когда температуры тел выравняются, теплопередача прекращается.

Внутреннюю энергию тела можно изменить двумя способами: совершая механическую работу или теплопередачей.

Теплопередача, в свою очередь, может осуществляться: 1) теплопроводностью; 2) конвекцией; 3) излучением .

Вопросы

  1. Пользуясь рисунком 3, расскажите, как изменяется внутренняя энергия тела, когда над ним совершают работу.
  2. Опишите опыт, показывающий, что за счёт внутренней энергии тело может совершить работу.
  3. Приведите примеры изменения внутренней энергии тела способом теплопередачи.
  4. Объясните на основе молекулярного строения вещества нагревание спицы, опущенной в горячую воду.
  5. Что такое теплопередача?
  6. Какими двумя способами можно изменить внутреннюю энергию тела?

Упражнение 2

  1. Сила трения совершает над телом работу. Меняется ли при этом внутренняя энергия тела? По каким признакам можно судить об этом?
  2. При быстром спуске по канату нагреваются руки. Объясните, почему это происходит.

Задание

Положите монету на лист фанеры или деревянную доску. Прижмите монету к доске и двигайте её быстро то в одну, то в другую сторону. Заметьте, сколько раз надо передвинуть монету, чтобы она стала тёплой, горячей. Сделайте вывод о связи между выполненной работой и увеличением внутренней энергии тела.

Внутреннюю энергию можно изменить двумя способами.

Если работа совершается над телом, его внутренняя энергия увеличивается.


Если работу совершает само тело, его внутренняя энергия уменьшается.

Всего существует три простых (элементарных) вида передачи тепла:

· Теплопроводность

· Конвекция

Конвекция — явление переноса теплоты в жидкостях или газах, или сыпучих средах потоками вещества. Существует т. н. естественная конвекция , которая возникает в веществе самопроизвольно при его неравномерном нагревании в поле тяготения. При такой конвекции нижние слои вещества нагреваются, становятся легче и всплывают, а верхние слои, наоборот, остывают, становятся тяжелее и опускаются вниз, после чего процесс повторяется снова и снова.

Тепловое излучение или лучеиспускание — передача энергии от одних тел к другим в виде электромагнитных волн за счёт их тепловой энергии.

Внутренняя энергия идеального газа

Исходя из определения идеального газа , в нем отсутствует потенциальная составляющая внутренней энергии (отсутствуют силы взаимодействия молекул, кроме ударного). Таким образом, внутренняя энергия идеального газа представляет собой только кинетическую энергию движения его молекул. Ранее (уравнение 2.10) было показано, что кинетическая энергия поступательного движения молекул газа прямо пропорциональна его абсолютной температуре.

Используя выражение универсальной газовой постоянной (4.6), можно определить величину константы α.

Таким образом, кинетическая энергия поступательного движения одной молекулы идеального газа будет определяться выражением.

В соответствии с кинетической теорией, распределение энергии по степеням свободы равномерное. У поступательного движения 3 степени свободы. Следовательно, на одну степень свободы движения молекулы газа будет приходиться 1/3 ее кинетической энергии.

Для двух, трех и многоатомных молекул газа кроме степеней свободы поступательного движения есть степени свободы вращательного движения молекулы. Для двухатомных молекул газа число степеней свободы вращательного движения равно 2, для трех и многоатомных молекул - 3.

Поскольку распределение энергии движения молекулы по всем степеням свободы равномерное, а число молекул в одном киломоле газа равняется Nμ, внутреннюю энергию одного киломоля идеального газа можно получить, умножив выражение (4.11) на число молекул в одном киломоле и на число степеней свободы движения молекулы данного газа.


где Uμ - внутренняя энергия киломоля газа в Дж/кмоль, i - число степеней свободы движения молекулы газа.

Для 1 - атомного газа i = 3, для 2 - атомного газа i = 5, для 3 - атомного и многоатомного газов i = 6.

Электрический ток. Условия существования электрического тока. ЭДС. Закон Ома для полной цепи. Работа и мощность тока. Закон Джоуля-Ленца.

Среди условий, необходимых для существования электрического тока различают: наличие в среде свободных электрических зарядов и создание в среде электрического поля . Электрическое поле в среде необходимо для создания направленного движения свободных зарядов. Как известно, на заряд q в электрическом поле напряженностью E действует сила F = qE, которая и заставляет свободные заряды двигаться в направлении электрического поля. Признаком существования в проводнике электрического поля является наличие не равной нулю разности потенциалов между любыми двумя точками проводника.

Однако, электрические силы не могут длительное время поддерживать электрический ток. Направленное движение электрических зарядов через некоторое время приводит к выравниванию потенциалов на концах проводника и, следовательно, к исчезновению в нем электрического поля. Для поддержания тока в электрической цепи на заряды кроме кулоновских сил должны действовать силы неэлектрической природы (сторонние силы). Устройство, создающее сторонние силы, поддерживающее разность потенциалов в цепи и преобразующее различные виды энергии в электрическую энергию, называется источником тока.

Условия существования электрического тока:

· наличие свободных носителей зарядов

· наличие разности потенциалов. это условия возникновения тока. чтобы ток существовал

· замкнутая цепь

· источник сторонних сил, который поддерживает разность потенциалов.

Любые силы, действующие на электрически заряженные частицы, за исключением электростатических (кулоновских) сил, называют сторонними силами.

Электродвижущая сила.

Электродвижущая сила (ЭДС) — скалярная физическая величина, характеризующая работу сторонних (непотенциальных) сил в источниках постоянного или переменного тока. В замкнутом проводящем контуре ЭДС равна работе этих сил по перемещению единичного положительного заряда вдоль контура.

Единицей ЭДС, как и напряжения является вольт. Можно говорить об электродвижущей силе на любом участке цепи. Электродвижущая сила гальванического элемента численно равна работе сторонних сил при перемещении единичного положительного заряда внутри элемента от отрицательного его полюса к положительному. Знак ЭДС определяется в зависимости от произвольно выбранного направления обхода того участка цепи, на котором включен данный источник тока.

Закон Ома для полной цепи.

Рассмотрим простейшую полную цепь, состоящую из источника тока и резистора сопротивлением R. Источник тока имеющий ЭДС ε, обладает сопротивлением r, его называют внутренним сопротивлением источника тока. Для получения закона ома для полной цепи используем закон сохранения энергии.

Пусть за время Δt через поперечное сечение проводника пройдет заряд q. Тогда по формуле , работа сторонних сил при перемещении заряда q равна . Из определения силы тока имеем: q = IΔt. Следовательно, .

Благодаря работе внешних сил при прохождении тока в цепи на ее внешнем и внутреннем участках цепи выделяется количество теплоты, по закону Джоуля-Ленца равное:

Согласно закону сохранения энергии A ст = Q, поэтому Отсюда Таким образом, ЭДС источника тока равна сумме падений напряжений на внешнем и внутреннем участках цепи.

1. Существуют два вида механической энергии: кинетическая и потенциальная. Кинетической энергией обладает любое движущееся тело; она прямо пропорциональна массе тела и квадрату его скорости. Потенциальной энергией обладают взаимодействующие между собой тела. Потенциальная энергия тела, взаимодействующего с Землёй, прямо пропорциональна его массе и расстоянию между
ним и поверхностью Земли.

Сумма кинетической и потенциальной энергии тела называется его полной механической энергией . Таким образом, полная механическая энергия зависит от скорости движения тела и от его положения относительно того тела, с которым оно взаимодействует.

Если тело обладает энергией, то оно может совершить работу. При совершении работы энергия тела изменяется. Значение работы равно изменению энергии .

2. Если в закрытую пробкой толстостенную банку, дно которой покрыто водой, накачивать воздух (рис. 67), то через какое-то время пробка из банки вылетит и в банке образуется туман.

Это объясняется тем, что в воздухе, находящемся в банке, присутствует водяной пар, образующийся при испарении воды. Появление тумана означает, что пар превратился в воду, т.е. сконденсировался, а это может происходить при понижении температуры. Следовательно, температура воздуха в банке понизилась.

Причина этого следующая. Пробка вылетела из банки, потому что находившийся там воздух действовал на неё с определённой силой. Воздух при вылете пробки совершил работу. Известно, что работу тело может совершить, если оно обладает энергией. Следовательно, воздух в банке обладает энергией.

При совершении воздухом работы понизилась его температура, изменилось его состояние. При этом механическая энергия воздуха не изменилась: не изменились ни его скорость, ни его положение относительно Земли. Следовательно, работа была совершена не за счёт механической, а за счёт другой энергии. Эта энергия - внутренняя энергия воздуха, находящегося в банке.

3. Внутренней энергией тела называют сумму кинетической энергии движения его молекул и потенциальной энергии их взаимодействия.

Кинетической энергией ​\((E_к) \) ​ молекулы обладают, так как они находятся в движении, а потенциальной энергией \((E_п) \) , поскольку они взаимодействуют.

Внутреннюю энергию обозначают буквой ​\(U \) ​. Единицей внутренней энергии является 1 джоуль (1 Дж).

\[ U=E_к+E_п \]

4. Чем больше скорости движения молекул, тем выше температура тела, следовательно, внутренняя энергия зависит от температуры тела . Чтобы перевести вещество из твёрдого состояния в жидкое состояние, например, превратить лёд в воду, нужно подвести к нему энергию. Следовательно, вода будет обладать большей внутренней энергией, чем лёд той же массы, и, следовательно, внутренняя энергия зависит от агрегатного состояния тела .

Внутренняя энергия тела не зависит от его движения как целого и от его взаимодействия с другими телами. Так, внутренняя энергия мяча, лежащего на столе и на полу, одинакова, так же как и мяча, неподвижного и катящегося по полу (если, конечно, пренебречь сопротивлением его движению).

Об изменении внутренней энергии можно судить по значению совершённой работы. Кроме того, поскольку внутренняя энергия тела зависит от его температуры, то по изменению температуры тела можно судить об изменении его внутренней энергии.

5. Внутреннюю энергию можно изменить при совершении работы. Так, в описанном опыте внутренняя энергия воздуха и паров воды в банке уменьшалась при совершении ими работы по выталкиванию пробки. Температура воздуха и паров воды при этом понижалась, о чём свидетельствовало появление тумана.

Если по куску свинца несколько раз ударить молотком, то даже на ощупь можно определить, что кусок свинца нагреется. Следовательно, его внутренняя энергия, так же как и внутренняя энергия молотка, увеличилась. Это произошло потому, что была совершена работа над куском свинца.

Если тело само совершает работу, то его внутренняя энергия уменьшается, а если над ним совершают работу, то его внутренняя энергия увеличивается.

Если в стакан с холодной водой налить горячую воду, то температура горячей воды понизится, а холодной воды - повысится. В этом случае работа не совершается, однако внутренняя энергия горячей воды уменьшается, о чем и свидетельствует понижение её температуры.

Поскольку вначале температура горячей воды была выше температуры холодной воды, то и внутренняя энергия горячей воды больше. А это значит, что молекулы горячей воды обладают большей кинетической энергией, чем молекулы холодной воды. Эту энергию молекулы горячей воды передают молекулам холодной воды при столкновениях, и кинетическая энергия молекул холодной воды увеличивается. Кинетическая энергия молекул горячей воды при этом уменьшается.

В рассмотренном примере механическая работа не совершается, внутренняя энергия тел изменяется путём теплопередачи .

Теплопередачей называется способ изменения внутренней энергии тела при передаче энергии от одной части тела к другой или от одного тела к другому без совершения работы.

Часть 1

1. Внутренняя энергия газа в запаянном сосуде постоянного объёма определяется

1) хаотическим движением молекул газа
2) движением всего сосуда с газом
3) взаимодействием сосуда с газом и Земли
4) действием на сосуд с газом внешних сил

2. Внутренняя энергия тела зависит от

A) массы тела
Б) положения тела относительно поверхности Земли
B) скорости движения тела (при отсутствии трения)

Правильный ответ

1) только А
2) только Б
3) только В
4) только Б и В

3. Внутренняя энергия тела не зависит от

A) температуры тела
Б) массы тела
B) положения тела относительно поверхности Земли

Правильный ответ

1) только А
2) только Б
3) только В
4) только А и Б

4. Как изменяется внутренняя энергия тела при его нагревании?

1) увеличивается
2) уменьшается
3) у газов увеличивается, у твёрдых и жидких тел не изменяется
4) у газов не изменяется, у твёрдых и жидких тел увеличивается

5. Внутренняя энергия монеты увеличивается, если её

1) нагреть в горячей воде
2) опустить в воду такой же температуры
3) заставить двигаться с некоторой скоростью
4) поднять над поверхностью Земли

6. Один стакан с водой стоит на столе в комнате, а другой стакан с водой такой же массы и такой же температуры находится на полке, висящей на высоте 80 см относительно стола. Внутренняя энергия стакана с водой на столе равна

1) внутренней энергии воды на полке
2) больше внутренней энергии воды на полке
3) меньше внутренней энергии воды на полке
4) равна нулю

7. После того как горячую деталь опустят в холодную воду, внутренняя энергия

1) и детали, и воды будет увеличиваться
2) и детали, и воды будет уменьшаться
3) детали будет уменьшаться, а воды увеличиваться
4) детали будет увеличиваться, а воды уменьшаться

8. Один стакан с водой стоит на столе в комнате, а другой стакан с водой такой же массы и такой же температуры находится в самолете, летящем со скоростью 800 км/ч. Внутренняя энергия воды в самолёте

1) равна внутренней энергии воды в комнате
2) больше внутренней энергии воды в комнате
3) меньше внутренней энергии воды в комнате
4) равна нулю

9. После того как в чашку, стоящую на столе, налили горячую воду, внутренняя энергия

1) чашки и воды увеличилась
2) чашки и воды уменьшилась
3) чашки уменьшилась, а воды увеличилась
4) чашки увеличилась, а воды уменьшилась

10. Температуру тела можно повысить, если

А. Совершить над ним работу.
Б. Сообщить ему некоторое количество теплоты.

Правильный ответ

1) только А
2) только Б
3) и А, и Б
4) ни А, ни Б

11. Свинцовый шарик охлаждают в холодильнике. Как при этом меняются внутренняя энергия шарика, его масса и плотность вещества шарика? Для каждой физической величины определите соответствующий характер изменения. Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

ФИЗИЧЕСКАЯ ВЕЛИЧИНА
A) внутренняя энергия
Б) масса
B) плотность

ХАРАКТЕР ИЗМЕНЕНИЯ
1) увеличивается
2) уменьшается
3) не изменяется

12. В бутыль, плотно закрытую пробкой, закачивают насосом воздух. В какой-то момент пробка вылетает из бутыли. Что при этом происходит с объёмом воздуха, его внутренней энергией и температурой? Для каждой физической величины определите характер её изменения. Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

ФИЗИЧЕСКАЯ ВЕЛИЧИНА
A) объём
Б) внутренняя энергия
B) температура

ХАРАКТЕР ИЗМЕНЕНИЯ
1) увеличивается
2) уменьшается
3) не изменяется

Ответы

Внутренней энергией называется сумма кинетических энергий всех частиц, из которых состоит тело, и потенциальных энергий взаимодействия этих частиц между собой. Сюда включается энергия взаимодействия электронов с ядрами и энергия взаимодействия составных частей ядра.

Внутренняя энергия зависит от его температуры. Температура характеризует среднюю кинетическую энергию частиц вещества. При изменении температуры меняется расстояние между частицами, следовательно, меняется и энергия взаимодействия между ними.

Внутренняя энергия меняется также при переходе вещества из одного агрегатного состояния в другое. Процессы, связанные с изменением температуры или агрегатного состояния вещества, называют тепловыми . Тепловые процессы сопровождаются изменением внутренней энергии тела.

Химические реакции, ядерные реакции также сопровождаются изменением внутренней энергии тела, т.к. меняется энергия взаимодействия частиц, участвующих в реакциях. Внутренняя энергия меняется при излучении или поглощении энергии атомами при переходе электронов с одной оболочки на другую.

Одним из способов изменения внутренней энергии является работа . Так при трении двух тел происходит повышение их температуры, т.е. возрастает их внутренняя энергия. Например, при обработке металлов – сверлении, обточке, фрезеровании.

При контакте двух тел с разными температурами происходит передача энергии от тела с высокой температурой к телу с низкой температурой. Процесс передачи энергии от одного тела к другому, имеющему более низкую температуру, называется теплопередача.

Таким образом, в природе существует два процесса, при которых меняется внутренняя энергия тела:

а) превращение механической энергии во внутреннюю и наоборот; при этом совершается работа;

б) теплопередача; при этом работа не совершается.

Если смешать горячую и холодную воду, то на опыте можно убедиться, что количество теплоты, отданное горячей водой, и количество теплоты, полученное холодной водой, равны между собой. Опыт показывает, что если между телами происходит теплообмен, то внутренняя энергия всех нагревающихся тел увеличивается на столько, на сколько уменьшается внутренняя энергия остывающих тел. Таким образом, энергия переходит от одних тел к другим, но суммарная энергия всех тел остается неизменной. Это закон сохранения и превращения энергии .

Во всех явлениях, происходящих в природе, энергия не возникает и не исчезает. Она только превращается из одного вида в другой, при этом её значение сохраняется.

Пример, свинцовая пуля, летевшая с некоторой скоростью, ударяется о преграду и нагревается.

Или, льдинка, падая из снежной тучи, тает у земли.

В приведенной ниже статье речь пойдет о внутренней энергии и способах изменения ее. Здесь мы ознакомимся с общим определением ВЭ, с ее значением и двумя видами изменения состояния энергией, которой обладает физическое тело, объект. В частности будет рассмотрено явление теплопередачи и совершение работы.

Введение

Внутренняя энергия - это та часть ресурса системы термодинамического характера, которая не является зависимой от конкретной отсчетной системы. Она может изменять свое значение в пределах изучаемой проблемы.

Характеристики равного значения в системе отсчета, по отношению к которой центральная масса тела/объекта макроскопических размеров являет собой состояние покоя, обладают одинаковой полной и внутренней энергиями. Они всегда соответствуют друг другу. Набор частей, из которых состоит полная энергия, входящая во внутреннюю, является непостоянным и зависит от условий решаемой задачи. Другими словами, ВЭ не является специфическим видом энергетического ресурса. Она представляет собой общую совокупность ряда компонентов системы полной энергии, которые изменяются с учетом конкретных ситуаций. Способы изменения внутренней энергии базируются на двух основных принципах: теплопередаче и совершении работы.

ВЭ является специфическим понятием для систем термодинамического характера. Она позволяет вводить в пользование физики разнообразные величины, такие как температура и энтропия, размерность химического потенциала, масса веществ, образующих систему.

Выполнение работы

Существует два способа изменения внутренней энергии тел(а). Первый образуется благодаря процессу совершения непосредственной работы над объектом. Второй - это явление теплопередачи.

В случаи, если выполнение работы совершается самим телом, его показатель внутренней энергии будет уменьшаться. Когда процесс будет завершен кем-то или чем-то над телом, тогда его показатель ВЭ будет расти. При этом наблюдается трансформация механического энергетического ресурса во внутренний тип энергии, которым обладает объект. Также может протекать все и наоборот: механическая во внутреннюю.

Теплопередача увеличивает величину ВЭ. Однако если тело будет остывать, то и энергия будет снижаться. При постоянном поддержании трансляции тепла, показатель будет возрастать. Сжатие газов служит примером увеличения показателя ВЭ, а их расширение (газов) - следствие уменьшения величины внутренней энергии.

Явление теплопередачи

Изменение внутренней энергии способом теплопередачи представляет собой увеличение/снижение энергетического потенциала. Им обладает тело, без проведения определенной (в частности механической) работы. Передающееся количество энергии именуют теплотой (Q, Дж), а сам процесс подчиняется всеобщему ЗСЭ. Совершение изменений во ВЭ всегда отражается ростом или снижение температуры самого тела.

Оба способа изменения внутренней энергии (работа и теплопередача) могут совершаться по отношению к одному объекту в одновременном порядке, т. е. они могут совмещаться.

Изменить ВЭ можно, например, создавая трение. Здесь четко отслеживается совершение механической работы (трение) и явление теплообмена. Подобным образом старались добывать огонь наши предки. Они создавали трение между древесиной, температура воспламенения которой соответствует отметке в 250 °С.

Изменение внутренней энергии тела посредством совершения работы или теплопередачей может происходить в один и тот же отрезок времени, т. е. эти два вида средств могут работать совместно. Однако простого трения в конкретном случае будет мало. Для этого одну ветвь необходимо было заострять. В настоящее время человек может получить огонь при помощи трения спичек, головки которых покрывают горючим веществом, воспламеняющимся при 60-100 °С. Первая подобная продукция началась создаваться в 30-ых годах XIX века. Это были фосфорные спички. Они способны загораться при относительно низкой температуре - 60 °С. В настоящее время пользуются которые были запущены в производство в 1855 года.

Зависимость энергии

Говоря о способах изменения внутренней энергии, важно будет упомянуть также о зависимости этого показателя от температуры. Дело в том, что количество этого энергетического ресурса обусловлено средней величиной кинетической энергии, сосредоточенной в молекуле тела, которая, в свою очередь, напрямую зависит от показателя температуры. Именно по этой причине изменение температуры всегда приводит к изменению ВЭ. Из этого также следует, что нагревание приводит к росту энергии, а охлаждение вызывает ее уменьшение.

Температура и теплообмен

Способы изменения внутренней энергии тела делятся на: теплопередачу и совершение механической работы. Однако важно будет знать, что количество теплоты и температура - это не одно и то же. Эти понятия нельзя путать. Температурные величины определяются градусами, а количество передаваемой или переданной теплоты определяется при помощи джоулей (Дж).

Контакт двух тел, одно из которых будет горячее, всегда приводит к утрате тепла одним (более горячим) и к приобретению его другим (более холодным).

Важно отметить, что оба способа изменения ВЭ тела всегда приводят к одинаковым результатам. Определить, каким именно способом было достигнуто ее изменение, по конечному состоянию тела, невозможно.