Законы электродинамики и принцип относительности краткое. «Законы электродинамики и принцип относительности

Цель урока: формировать представление учащихся, о том, как изменились понятия о пространстве и времени под воздействием положений специальной теории относительности Эйнштейна.

Ход урока

1. Анализ контрольной работы.

2. Изучение нового материала .

В конце 19 века были сформулированы основные положения электродинамики. Возник вопрос в справедливости принципа относительности Галилея применительно к электромагнитным явлениям. В разных инерциальных системах одинаково ли протекают электромагнитные явления: как распространяются электромагнитные волны, взаимодействуют заряды и токи при переходе от одной инерциальной системы к другой?

Инерциальная – это такая система отсчета, относительно которой свободные тела движутся с постоянной скоростью. Оказывает ли равномерное прямолинейное движение действие на электромагнитные процессы (на механические явления оно не влияет)?

При переходе от одной инерциальной системы к другой законы электродинамики изменяются или как законы Ньютона остаются постоянными?

Например, по законам сложения скоростей в механике скорость может равняться с=3·108м/с только в одной системе отсчета. В другой системе отсчета, которая сама движется со скоростью Ѵ, скорость света должна равняться с̄-Ѵ̄. Но согласно законам электродинамики скорость электромагнитных волн в вакууме по разным направлениям равна с=3·108м/с

Между электродинамикой и механикой Ньютона возникли противоречия.

Чтобы разрешить возникшие противоречия были высказаны три разных способа.

Первый способ Заключался в том, чтобы отказаться от принципа относительности в применении к электромагнитным явлениям. Эту возможность поддерживал основатель электронной теории Х. Л о р е н ц (голл.). Тогда считалось, что электромагнитные явления протекают в «мировом эфире» – это всепроникающая среда, заполняющая все мировое пространство. Инерциальная система отсчета, рассматривалась Лоренцем, как система покоящаяся относительно эфира. В этой системе законы электродинамики строго выполняются и в этой системе отсчета скорость света в вакууме одинакова по всем направлениям.

Второй способ заключался в том, чтобы объявить уравнения Максвелла неправильными.

Г. Герц пытался их переписать, таким образом, чтобы они не менялись при переходе от одной инерциальной системы к другой, т. е. как законы механики. Герц полагал, что эфир движется вместе с движущимися телами и поэтому электромагнитные процессы происходят одинаково независимо от движения или покоя тел. То есть Г. Герц принцип относительности сохранил.

Третий способ состоял в отказе от традиционных представлений о пространстве и времени. Сохранялись уравнения Максвелла и принцип относительности, но пришлось отказаться от самых очевидных, самых основных представлений классической механики.

Этот способ разрешения противоречий оказался в итоге правильным.

Эксперимент опроверг как первую, так и вторую попытку исправления, возникших противоречий между электродинамикой и механикой, оставив принцип относительности без изменений.

Развивая третий способ решения проблемы А. Эйнштейн доказал, что представления о пространстве и времени устарели и заменил их новыми.

Уравнения Максвелла, исправленные Герцем, не могли объяснить наблюдаемые явления. Опыт показал, что среда не может увлекать за собой свет, так как она будет увлекать эфир, в котором свет распространяется.

Опыты американских ученых А. Майкельсона и Э. Морли доказали, что никакой среды типа «светоносного эфира» не существует

Объединить электродинамику Максвелла и принцип относительности оказалось возможным при отказе от традиционных представлений о пространстве и времени, т. е. не зависят от системы отсчета ни расстояние, ни течение времени.

Реферат по предмету Концепции Современного Естествознания

Теория относительности

Развитие электродинамики привело к пересмотру представлений о пространстве и времени. Согласно классическим представлениям о пространстве и времени, считавшимся на протяжении веков незыблемыми, движение не оказывает никакого влияния на течение времени (время абсолютно), а линейные размеры любого тела не зависят от того, покоится ли тело или движется (длина абсолютна).

Специальная теория относительности Эйнштейна – это новое учение о пространстве и времени, пришедшее на смену старым (классическим) представлениям.

Законы электродинамики и принцип относительности

После создания электродинамики возникли сомнения в справедливости принципа относительности Галилея применительно к электромагнитным явлениям.

Принцип относительности в механике и электродинамике . После того как во второй половине XIX века Максвеллом были сформулированы основные законы электродинамики, возник вопрос, распространяется ли принцип относительности, и на электромагнитные явления. Иными словами, протекают ли электромагнитные процессы (взаимодействие зарядов и токов, распространение электромагнитных волн и т.д.) одинаково во всех инерциальных системах отсчета? Или, может быть, равномерное прямолинейное движение, не влияя на механические явления, оказывает некоторое воздействие на электромагнитные процессы?

Чтобы ответить на этот вопрос, нужно было выяснить, меняются ли основные законы электродинамики при переходе от одной инерциальной системы к другой или же подобно законам Ньютона они остаются неизменными. Только в последнем случае можно отбросить сомнения в справедливости принципа относительности применительно к электромагнитным процессам и рассматривать этот принцип как общий закон природы.

Законы электродинамики сложны, и строгое решение этой задачи – нелегкое дело. Однако уже простые соображения, казалось бы, позволяют найти правильный ответ. Согласно законам электродинамики скорость распространения электромагнитных волн в вакууме одинакова по всем направлениям и равна: c = 3 · 10 8 м/с. Но, с другой стороны, в соответствии с законом сложения скоростей механики Ньютона скорость может равняться c только в одной избранной системе отсчета. В любой другой системе отсчета, движущейся по отношению к этой избранной системе со скоростью v , скорость света должна уже равняться c v . Это означает, что если справедлив обычный закон сложения скоростей, то при переходе от одной инерциальной системы к другой законы электродинамики должны меняться так, чтобы в этой новой системе отсчета скорость света уже равнялась не с , а c v .

Таким образом, обнаружились определенные противоречия между электродинамикой и механикой Ньютона, законы которой согласуются с принципом относительности. Возникшие трудности пытались преодолеть тремя различными способами.

Первая возможность состояла в том, чтобы объявить несостоятельным принцип относительности в применении к электромагнитными явлениям. Эту позицию отстаивал великий голландский физик, основатель электронной теории Х. Лоренц. Электромагнитные явления еще со времен Фарадея рассматривались как процессы в особой, всепроникающей среде, заполнявшей все пространство, ─ «мировом эфире». Инерциальная система отсчета, покоящаяся относительно эфира, ─ это согласно Лоренцу особая преимущественная система. В ней законы электродинамики Максвелла справедливы и имеют наиболее простую форму. Лишь в этой системе отсчета скорость света в вакууме одинакова по всем направлениям.

Вторая возможность состоит в том, чтобы считать неправильными уравнения Максвелла и пытаться изменить их таким образом, чтобы они при переходе от одной инерциальной системы к другой (в соответствии с обычными, классическими представлениями о пространстве и времени) не менялись. Такая попытка, в частности, была предпринята Г. Герцем. По Герцу, эфир полностью увлекается движущимися телами, и поэтому электромагнитные явления протекают одинаково, независимо от того, покоится тело или движется. Принцип относительности справедлив.

Наконец, третья возможность разрешения указанных трудностей состоит в отказе от классических представлений о пространстве и времени, с тем чтобы сохранить как принцип относительности, так и законы Максвелла. Это наиболее революционный путь, ибо он означает пересмотр в физике самых глубоких, самых основных представлений. С данной точки зрения оказываются неточными не уравнения электромагнитного поля, а законы механики Ньютона, согласующиеся со старыми представлениями о пространстве и времени. Изменять нужно законы механики, а не законы электродинамики Максвелла.

Единственно правильной оказалась именно третья возможность. Последовательно развивая её, А. Эйнштейн пришел к новым представлениям о пространстве и времени. Первые два пути, как оказалось, опровергаются экспериментом.

При попытках Герца изменить законы электродинамики Максвелла выяснилось, что новые уравнения не способны объяснить ряд наблюдаемых фактов. Так, согласно теории Герца движущаяся вода должна полностью увлекать за собой распространяющийся в ней свет, т.к. она увлекает эфир, в котором свет распространяется. Опыт же показал, что в действительности это не так.

Точка зрения Лоренца, согласно которой должна существовать избранная система отсчета, связанная с мировым эфиром, пребывающим в абсолютном покое, также была опровергнута прямыми опытами.

Если бы скорость света была равна 300 000 км/с только в системе отсчета, связанной с эфиром, то, измеряя скорость света в произвольной инерциальной системе, можно было бы обнаружить движение этой системы по отношению к эфиру и определить скорость этого движения. Подобно тому как в системе отсчета, движущейся относительно воздуха, возникает ветер, при движении по отношению к эфиру (если, конечно, эфир существует) должен быть обнаружен «эфирный ветер». Опыт по обнаружению «эфирного ветра» был поставлен в 1881 г. американскими учеными А. Майкельсоном и Э. Морли по идее, высказанной за 12 лет до этого Максвеллом.

В этом опыте сравнивалась скорость света в направлении движения Земли и в перпендикулярном направлении. Измерения проводились очень точно с помощью специального прибора – интерферометра Майкельсона. Эксперименты ставились в разное время суток и различные времена года. Но всегда получался отрицательный результат: движения Земли по отношению к эфиру обнаружить не удалось.

Таким образом, идея о существовании преимущественной системы отсчета не выдержала опытной проверки. В свою очередь это означало, что никакой особой среды – «светоносного эфира», – с которой можно было бы связать такую преимущественную систему отсчета, не существует.

Согласовать принцип относительности с электродинамикой Максвелла оказалось возможным, только отказавшись от классических представлений о пространстве и времени, согласно которым расстояния и течение времени не зависят от системы отсчета.

Постулаты теории относительности

В основе теории относительности лежат два постулата.

Для объяснения отрицательных результатов опыта Майкельсона и других оптов, которые должны были обнаружить движение Земли относительно эфира, вводились различные гипотезы. С помощью этих гипотез пытались объяснить, почему не удается обнаружить преимущественную систему отсчета (считали, что такая система в действительности якобы имеется).

Совсем по-иному подошел к проблеме Эйнштейн: не стоит изобретать различные гипотезы для объяснения отрицательных результатов всех попыток обнаружить различие между инерциальными системами. Законом природы является полное равноправие всех инерциальных систем отсчета в отношении не только механических, но и электромагнитных процессов. Нет никакого различия между состоянием покоя и равномерного прямолинейного движения.

Принцип относительности – главный постулат теории Эйнштейна. Его можно сформулировать так: все процессы природы протекают одинаково во всех инерциальных системах отсчета.

Это означает, что во всех инерциальных системах физические законы имеют одинаковую форму. Таким образом, принцип относительности классической механики обобщается на все процессы в природа, в том числе и на электромагнитные. Но теория относительности основывается не только на принципе относительности. Имеются еще второй постулат: скорость света в вакууме одинакова для всех инерциальных систем отсчета. Она не зависит ни от скорости источника, ни от скорости приемника светового сигнала.

Скорость света занимает, таким образом, особое положение. Более того, как вытекает из постулатов теории относительности, скорость света в вакууме является максимально возможной скоростью передачи взаимодействия в природе.

Для того, чтобы решиться сформулировать постулаты теории относительности, нужна была большая научная мысль, т.к. они противоречили классическим представлениям о пространстве и времени.

В самом деле, допустим, что в момент времени, когда начала координат инерциальных систем отсчета К и К 1 , движущихся друг относительно друга со скоростью v , совпадают, в начале координат происходит кратковременная вспышка света. За время t системы сместятся друг относительно друга на расстояние vt , а сферическая волновая поверхность будет иметь радиус ct :

Системы К и К 1 равноправны, и скорость света одинакова в той и другой системе. Следовательно, с точки зрения наблюдателя, связанного с системой отсчета К , центр сферы будет находиться в точке О, а с точки зрения наблюдателя, связанного с системой отсчета К 1 , он будет находиться в точке О 1 . Но ведь не может одна и та же сферическая поверхность иметь центры О и О 1 . Это явное противоречие вытекает из рассуждений, основанных на постулатах теории относительности.

Противоречие здесь действительно есть. Но не внутри самой теории относительности. Имеется лишь

противоречие с классическими представлениями о пространстве и времени, которые при больших скоростях уже несправедливы.

Относительность одновременности

До начала XX века никто не сомневался, что время абсолютно. Два события, одновременные для жителей Земли, одновременны для жителей любой космической цивилизации. Создание теории относительности показало, что это не так.

Причиной несостоятельности классических представлений о пространстве и времени является неправильное предположение о возможности мгновенной передачи взаимодействий и сигналов из одной точки пространства в другую. Существование предельной конечной скорости передачи взаимодействий вызывает необходимость глубокого изменения обычных представлений о пространстве и времени, основанных на повседневном опыте. Представление об абсолютном времени, которое течет раз и навсегда заданным темпом, совершенно независимо от материи и её движения, оказывается неправильным.

Если допустить мгновенное распространение сигналов, то утверждение, что события в двух пространственно разделенных точках А и В произошли одновременно, будет иметь абсолютный смысл. Можно поместить в точки А и В часы и синхронизировать их с помощью мгновенных сигналов. Если такой сигнал отправлен из А , например, в 0 ч 45 мин и он в этот же момент времени по часам В пришел в точку В, то, значит, часы показывают одинаковое время, т.е. идут синхронно. Если же такого совпадения нет, то часы можно синхронизировать, подведя вперед те часы, которые показывают меньшее время в момент отправления сигнала.

Любые события, например, два удара молнии, одновременны, если они происходят при одинаковых показаниях синхронизированных часов.

Только располагая в точках А и В синхронизированными часами, можно судить о том, произошли ли два каких-либо события в этих точках одновременно или нет. Но как можно синхронизировать часы, находящиеся на некотором расстоянии друг от друга, если скорость распространения сигналов не бесконечно велика?

Для синхронизации часов естественно прибегнуть к световым или вообще электромагнитным сигналом, т.к. скорость электромагнитных волн в вакууме является строго определенной, постоянной величиной.

Рассмотрим подробнее простой метод синхронизации часов, не требующий никаких вычислений. Допустим, что космонавт хочет узнать, одинаково ли идут часы А и В , установленные на противоположных концах космического корабля.

движется, положение иное. Часы на носу корабля удаляются от того места, где произошла вспышка света источника (точка с координатой ОС ), и, чтобы достигнуть часов А , свет должен преодолеть расстояние, большее половины длины корабля.

Напротив, часы В на корме приближаются к месту вспышки, и путь светового сигнала меньше половины длины корабля (на рисунках слева показано, как, в первом случае, координаты х и х 1 совпадают в момент вспышки, потом, как свет достигает часов В ). Поэтому наблюдатель в системе К приходит к выводу, что сигналы достигают часов неодновременно.

Два любых события в точках А и В , одновременные в системе К 1 , неодновременны в системе К. Но в системе принципа относительности системы К 1 и К совершенно равноправны. Ни одной из этих систем нельзя отдать предпочтение. Поэтому мы вынуждены прийти к заключению, что одновременность пространственно разделенных событий относительна . Причиной относительности одновременности является, как мы видим, конечность скорости распространения сигналов.

Одновременность событий относительна. Представить себе это наглядно, «почувствовать», мы не в состоянии из-за того, что скорость света много больше тех скоростей, с которыми движемся мы.

Основные следствия, вытекающие из постулатов теории относительности.

Из постулатов теории относительности вытекает ряд важнейших следствий, касающихся свойств пространства и времени.

Относительность расстояний . Расстояние не является абсолютной величиной, а зависит от скорости движения тела относительно данной системы отсчета.

Обозначим через l o длину стержня с системе отсчета К , относительно которой стержень покоится. Тогда длина l этого стержня в системе отсчета К 1 , относительно которой стержень движется со скоростью определяется формулой:

Как видно из этой формулы, l l 0 . В этом состоит релятивистское сокращение размеров тела в движущихся системах отсчета (релятивистскими называются эффекты, наблюдаемые при скоростях движения, близких к скорости света).

Относительность промежутков времени . Пусть интервал времени между двумя событиями, происходящими в одной и той же точке инерциальной системы К , равен τ 0 . Этими событиями, например, могут быть два удара метронома, отсчитывающего секунды.

Тогда интервал τ между этими же событиями в системе отсчета К 1, движущейся относительно системы К выражается так:

Очевидно, что τ > τ o . В этом состоит релятивистский эффект замедления времени в движущихся системах отсчета.

Если v c , то в формулах можно пренебречь величиной v 2 / c 2 . Тогда l lo и τ τ o , т.е. релятивистское сокращение размеров тел и замедление вреиени в движущейся системе отсчета можно не учитывать.

Релятивистский закон сложения скоростей . Новым релятивистским представлениям о пространстве и времени соответствует новый закон сложения скоростей. Очевидно, что классический закон сложения скоростей не может быть справедлив, так как он противоречит утверждению о постоянстве скорости света в вакууме.

Если поезд движется со скоростью v и в вагоне в направлении движения поезда распространяется световая волна, то ее скорость относительно Земли должна равняться опять-таки с , а не v + c . Новый закон сложения скоростей и должен приводить к требуемому результату.

Запишем закон сложения скоростей для частного случая, когда тело движется вдоль оси Х 1 системы отсчета К 1 , которая в свою очередь движется со скоростью v относительно системы отсчета К . Причем в процессе движения координатные оси Х и Х 1 все время совпадают, а координатные оси Y и Y 1 , Z и Z 1 и и остаются параллельными.

Обозначим скорость тела относительно К 1 через v 1 , а скорость этого же тела относительно К через v . Тогда релятивистский закон сложения скоростей будет иметь вид

Если и, то дробью в знаменателе можно пренебречь, и вместо этой фигни слева мы получим классический закон сложения скоростей: v 2 = v 1 +v . При v 1 =c скорость v 2 также равна c , как этого требует второй постулат теории относительности. Действительно,

Замечательным свойством релятивистского закона сложения скоростей является то, что при любых скоростях v электродинамики и принцип относительности . Постулаты специальной теории относитель­ности...

  • Рабочая программа среднего (полного) общего образования по физике Учителя физики

    Рабочая программа

    Часть 2: электродинамика , электромагнитные колебания и волны, оптика. Основы специальной теории относительности , квантовая физика... Р. № 1104, 1105 59/18 Законы электродинамики и принцип относительности . Постулаты теории относительности . § 75, 76 60/19 ...

  • Рабочая программа учебного предмета муниципального образовательного учреждения средней общеобразовательной школы с. Березняк

    Рабочая программа

    ТЕОРИИ ОТНОСИТЕЛЬНОСТИ (3 часа) 32 Законы электродинамики и принцип относительности . Постулаты теории относительности 1 Комбинированный урок Постулаты теории относительности Эйнштейна...

  • Учебники для 10 и 11 класса

    Учебники

    Относитель- ности 5 ч 1. Законы электродинамики и принцип относительности . 75/2 2. Постулаты теории относительности . Релятивистский закон сложения скоростей...

  • В конце 19 века были получены опытные данные, которые не могли быть объяснены с позиций физики Ньютона. В частности, если источник и приемник света движутся навстречу друг другу равномерно и прямолинейно, то скорости их по Ньютону должны складываться. Однако, американский физик Майкельсон и другие, проводя опыты с помощью чувствительного интерферометра, показали, что скорости света в вакууме не зависят от скорости движения источника и приемника и одинаковы во всех инерциальных системах отсчета. Эйнштейн пришел к выводу, что постоянство скорости света – фундаментальный закон природы. Этот вывод был положен Эйнштейном в основу разработанной им специальная теории относительности (см. раздел 2.5). Была также доказана инвариантность уравнений Максвелла (см. раздел 3.5) относительно преобразований Лоренца, тогда как они не инвариантны относительно преобразований Галилея (см. 2.4). Из теории Эйнштейна следовало, что электромагнитные взаимодействия (например, зарядов) передаются в вакууме со скоростью, ограниченной скоростью света, через поле (концепция близкодействия) во всех системах отсчета.

    Разделение электромагнитного поля на электрическое и магнитное поля относительно – в природе существует единое электромагнитное поле. Свет также имеет электромагнитную природу (рис.3.27).

    На основе специальной теории относительности были объяснены закономерности эффекта Доплера для электромагнитных волн. При удалении источника света от наблюдателя со скоростьюVпроисходит изменение частоты (или длины волны на величину Δλ) в спектре излучения источника с длиной волны излучения λ (красное смещение ):

    Эффект Доплера нашел применение в радиолокации для измерения скорости Vи расстояния до движущегося объекта, в астрофизике - для измерения скоростей удаления галактик и т.д.

    Обусловленное конечностью скорости света изменение видимого положения звезд на небесной сфере получило название аберрации света .

    3.7. Квазистационарное магнитное поле

    Ток смещения принципиально отличается от тока проводимости – он не связан с движением зарядов. Он обусловлен только изменением во времени электрического поля (см.3.5). Даже в вакууме изменение электрического поля приводит к возникновению в окружающем пространстве магнитного поля . Именно по этому признаку ток смещения тождественен току проводимости и это дает возможность условно называть его «током».

    Ток смещения j см возникает не только в вакууме или диэлектриках, но и в проводниках при прохождении по ним переменного тока проводимостиj пр. Однако он мал по сравнению сj пр (ввиду этого им пренебрегают).

    В массивных проводниках, помещенных в переменное магнитное поле, могут в соответствии с законом (3.70) наводиться индукционные токи. Эти токи являются вихревыми в объеме проводников и известны как токи Фуко .

    Токи Фуко создают собственное магнитное поле, которое в соответствии с правилом Ленца (см.3.73) препятствуют изменению вызвавшему их магнитного потока. Высокочастотные токи Фуко приводят к нагреванию проводников, что позволяет их применять для плавки металлов в индукционных печах, в микроволновых печах для нагревания проводящих токи продуктов, в физиотерапии (тело человека – проводник) и т.д. В других случаях для уменьшения потерь на тепло в электрических машинах и трансформаторах увеличивают сопротивление токам Фуко, делая их сердечники не сплошными, а из изолированных друг от друга тонких пластин.

    В цепях с переменным электрическим током электросопротивление проводников возрастает с увеличением частоты тока. Это объясняется тем, что распределение плотности тока по сечению проводника становится неоднородным с учетом токов Фуко: плотность тока возрастает у поверхности (так называемый скин – эффект ). Это же позволяет делать проводники пустотелами (трубчатыми). На скин – эффекте основаны методики высокочастотной закалки поверхности деталей.

    Сила переменного тока оказывается в один и тот же момент времени неодинаковой в разных участках проводника. Это обусловлено конечной скоростью распространения вдоль проводника меняющегося электромагнитного поля. Однако, если учесть малую скорость движения носителей зарядов по сравнению со скоростью распространения поля, то токи можно считать квазистационарными также как и возбуждаемые ими магнитные поля.

    Переменные токи получают с помощью генераторов. При вращении контура в однородном магнитном поле с угловой скоростью через площадь, ограниченную контуром, периодически изменяется магнитный поток (см. 3.67).

    где Ф 0 - максимальное значение потока через площадьSконтура.

    Электродвижущая сила, возникающая при этом (см.3.70), будет
    изменяться по синусоидальному закону. ε 0 =ωФ 0 -амплитуда ЭДС. Если цепь замкнута, то в ней потечет переменный ток:

    .

    Вообще любой проводник помимо омического сопротивления Rобладает индуктивностьюLи емкостью С. Они оказывают току дополнительное сопротивление в виду появления ЭДС самоиндукции (см.3.73) и инертности перезарядки емкости. Тогда амплитудное значение силы переменного тока:

    (3.90)

    Величина
    имеет характер полного сопротивления (импеданс ). Она зависит от значенийR,L,Cи частоты. При, удовлетворяющем условию:

    ,

    полное сопротивление имеет минимальное значение равное R, а амплитуда силы переменного тока достигает максимального значения:

    Частота
    - называется резонансной.R L =Lи
    - называют индуктивным и емкостным сопротивлениями в цепи переменного тока.

    Переменный электрический ток имеет большое практическое применение. Его можно передавать с малыми потерями на большие расстояния и с помощью трансформаторов в широких пределах изменять его силу и напряжение.

    Чтобы характеризовать действие переменного тока в сравнении его с постоянным вводится понятиедействующих значений силы тока и напряжения . Действующим значением силы тока называют величинуI, связанную с амплитудойI 0 следующим образом:

    аналогично и напряжение
    . Именно они определяют мощность переменного тока. Можно также дать и другое определениеI Д: действующее значение силы переменного тока равно такой силе постоянного тока, который выделяет в цепи то же количество теплоты, что и переменный ток.

    Принцип относительности и законы Ньютона

    Принцип относительности Галилея органически вошел в созданную И. Ньютоном классическую механику. Ее основу составляют три «аксиомы» - три знаменитых закона Ньютона. Уже первый из них, гласящий: «Всякое тело продолжает удерживаться в своем состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не принуждается приложенными силами изменить это состояние», говорит об относительности движения и одновременно указывает на существование систем отсчета (они были названы инерциальными), в которых тела, не испытывающие внешних воздействий, движутся «по инерции», не ускоряясь и не замедляясь. Именно такие инерциальные системы имеются в виду и при формулировке двух остальных законов Ньютона. При переходе из одной инерциальной системы в другую меняются многие величины, характеризующие движение тел, например, их скорости или формы траектории движения, но законы движения, то есть соотношения, связывающие эти величины, остаются постоянными.

    Преобразования Галилея

    Чтобы описывать механические движения, то есть изменение положения тел в пространстве, Ньютон четко сформулировал представления о пространстве и времени. Пространство мыслилось как некий «фон», на котором развертывается движение материальных точек. Их положение можно определять, например, с помощью декартовых координат x, у, z, зависящих от времени t. При переходе из одной инерциальной системы отсчета К в другую К", движущуюся по отношению к первой вдоль оси x со скоростью v, координаты преобразуются: x" = x - vt, y" = у, z" = z, а время остается неизменным: t" = t. Таким образом принимается, что время абсолютно. Эти формулы получили название преобразований Галилея.

    По Ньютону, пространство выступает как некая координатная сетка, на которую не влияет материя и ее движение. Время в такой «геометрической» картине мира как бы отсчитывается некими абсолютными часами, ход которых ничто не может ни ускорить, ни замедлить.

    Принцип относительности в электродинамике

    Принцип относительности Галилея более трехсот лет относили только к механике, хотя в первой четверти 19 в., прежде всего благодаря трудам М.Фарадея, возникла теория электромагнитного поля, получившая затем дальнейшее развитие и математическую формулировку в работах Дж.К. Максвелла. Но перенос принципа относительности на электродинамику представлялся невозможным, так как считалось, что все пространство заполнено особой средой - эфиром, натяжения в котором и истолковывались как напряженности электрического и магнитного полей. При этом эфир не влиял на механические движения тел, так что в механике он «не чувствовался», но на электромагнитных процессах движение относительно эфира («эфирный ветер») должно было сказываться. В результате находящийся в закрытой кабине экспериментатор при помощи наблюдения над такими процессами мог, казалось, определить, находится ли его кабина в движении (абсолютном!), или же она покоится. В частности, ученые полагали, что «эфирный ветер» должен влиять на распространение света. Попытки обнаружить «эфирный ветер», однако, не увенчались успехом, и концепция механического эфира была отвергнута, благодаря чему принцип относительности как бы родился заново, но уже как универсальный, справедливый не только в механике, но и в электродинамике, и других областях физики.

    Преобразования Лоренца

    Подобно тому, как математической формулировкой законов механики являются уравнения Ньютона, уравнения Максвелла являются количественным представлением законов электродинамики. Вид этих уравнений также должен оставаться неизменным при переходе из одной инерциальной системы отсчета в другую. Чтобы удовлетворить этому условию, необходимо заменить преобразования Галилея иными: x"= g(x-vt); y"= y; z"=z; t"=g(t-vx/c 2), где g = (1-v 2 / c 2)-1/2, а с - скорость света в вакууме. Последние преобразования, установленные Х. Лоренцем в 1895 и носящие его имя, являются основой специальной (или частной) теории относительности. При vc они переходят в преобразования Галилея, но если v близко к c, то проявляются существенные отличия от картины пространства - времени, которую принято называть нерелятивистской. Прежде всего, обнаруживается несостоятельность привычных интуитивных представлений о времени, выясняется, что события, которые происходят одновременно в одной системе отсчета, перестают быть одновременными в другой. Меняется и закон преобразования скоростей.

    Преобразование физических величин в релятивистской теории

    В релятивистской теории пространственные расстояния и промежутки времени не остаются неизменными при переходе из одной системы отсчета в другую, движущуюся относительно первой со скоростью v. Длины сокращаются (в направлении движения) в 1/g раз, и в такое же число раз «растягиваются» промежутки времени. Относительность одновременности - основная принципиально новая черта современной частной теории относительности.

    Во второй половине XIX века Д. Максвеллом были сформулированы основные законы электродинамики. При этом возникли сомнения в справедливости механического принципа относительности Галилея применительно к электромагнитным явлениям. Вспомним суть механического принципа относительности.
    Если системы отсчета движутся относительно друг друга равномерно и прямолинейно и в одной из них справедливы законы динамики Ньютона, то эти системы являются инерциальными. Во всех инерциальных системах отсчета законы классической динамики имеют одинаковую форму (инвариантны) ; в этом состоит суть механического принципа относительности или принципа относительности Галилея.
    Для доказательства этого принципа рассмотрим две системы отсчета: инерциальную систему К (с координатами x, y, z ), которую условно будем считать неподвижной и подвижную систему K" (с координатами x", y", z" ), движущуюся относительно К равномерно и прямолинейно со скоростью u = const. Примем, что в начальный момент времени t = 0 начала O и O" обеих систем координат совпадают. Расположение систем координат в произвольный момент времени t имеет вид, изображенный на рис. 5.1. Скорость u направлена вдоль прямой OO" , а радиус-вектор, проведенный из точки O в точку O" , равен r 0 =ut .
    Координаты произвольной материальной точки A в неподвижной и подвижной системах отсчета определяются радиусами-векторами r и r" , причем

    В проекциях на оси координат векторное уравнение (5.1) записывается в виде, называемом преобразованиями Галилея :

    (5.2)

    В частном случае, когда система K" движется со скоростью v вдоль положительного направления оси x системы K , преобразования координат Галилея имеют следующий вид:


    В классической механике предполагается, что ход времени не зависит от относительного движения систем отсчета. Поэтому система уравнений (5.2) дополняется еще одним соотношением:

    (5.3)

    Соотношения (5.2) – (5.3) справедливы лишь в случае u . При скоростях, сравнимых со скоростью света, преобразования Галилея заменяются более общими преобразованиями Лоренца.
    Продифференцируем уравнение (5.1) по времени и учитывая, что u = const, найдем соотношения между скоростями и ускорениями точки А относительно обеих систем отсчета:


    откуда
    (5.4)

    А также

    (5.5)

    Если на точку А другие тела не действуют, то a = 0 и согласно (5.5) a" = 0, т.е. подвижная система K" является инерциальной – изолированная материальная точка либо движется относительно нее равномерно и прямолинейно, либо покоится.
    Из выражения (5.5) следует, что


    т.е. уравнения Ньютона (уравнения динамики) для материальной точки одинаковы во всех инерциальных системах отсчета или инвариантны по отношению к преобразованиям Галилея. Этот результат часто формулируют следующим образом: равномерное и прямолинейное движение системы как целого не влияет на ход протекающих в ней механических процессов .
    Классическая механика Ньютона достоверно описывает движение макроскопических тел, движущихся со скоростями, намного меньшими скорости света. В конце XIX в. было установлено, что выводы классической механики противоречат некоторым опытным данным. В частности при изучении движения быстрых заряженных частиц оказалось, что их движение не подчиняется законам Ньютона. Далее возникли затруднения при попытках применить классическую механику для объяснения распространения света. Согласно законам электродинамики скорость распространения электромагнитных волн в вакууме одинакова по всем направлениям и приблизительно равна с = 3*10 8 м/с. Но в соответствии с законами классической физики скорость света может равняться с только в одной избранной системе отсчета. В любой другой системе отсчета, движущейся относительно избранной системы со скоростью v , она должна уже равняться с -v , или с +v . Это означает, что если справедлив закон сложения скоростей классической механики (формула (5.4)), то при переходе от одной инерциальной системы к другой законы электродинамики должны меняться, так как должна меняться скорость света. Таким образом, обнаружились противоречия между электродинамикой и механикой Ньютона, законы которой согласуются с принципом относительности Галилея. Для преодоления возникших трудностей предлагались различные способы:

    1. Принять несостоятельность принципа относительности применительно к электромагнитным явлениям. Еще со времен Фарадея электромагнитные явления рассматривались как процессы в особой, всепроникающей среде, заполняющей все пространство, - эфире . Согласно Х. Лоренцу инерциальная система отсчета, покоящаяся относительно эфира, - это особая система, в которой законы электродинамики Максвелла справедливы. Лишь в этой системе отсчета скорость света в вакууме одинакова по всем направлениям.
    2. Считать ошибочными уравнения электродинамики Максвелла и попытаться изменить их таким образом, чтобы они при переходе от одной инерциальной системы к другой (в соответствии с классическими представлениями о пространстве и времени) не менялись. Такая попытка, в частности, была предпринята Г. Герцем, который считал, что эфир полностью увлекается движущимися телами, поэтому электромагнитные явления протекают одинаково, независимо от того, покоится тело или движется. Принцип относительности справедлив.
    3. Отказаться от классических представлений о пространстве и времени, с тем, чтобы сохранить и принцип относительности, и законы Максвелла. С этой точки зрения оказываются неточными не уравнения электромагнитного поля, а законы механики Ньютона, согласующиеся со старыми представлениями о пространстве и времени. Таким образом, изменять нужно законы классической механики, а не законы электродинамики Максвелла.
    Вспомним, как трактовались пространство и время в классической физике. Пространство рассматривалось как бесконечная пустая протяженность, вмещающая в себе все тела и не зависящая от материи. Время рассматривалось как абсолютный фактор равномерного потока длительности, в котором все возникает и исчезает. При этом время не зависит ни от каких процессов в мире.
    Развитие естествознания опровергло эти представления. Никакого абсолютного пространства и времени не существует. Вселенная заполнена материей в форме вещества и поля, а пространство выступает как всеобщее свойство материи. Время всегда связано с движением и развитием материи. Таким образом, пространство – это форма бытия материи, которая выражает ее протяженность и структурность; время – это форма бытия материи, характеризующая длительность существования всех объектов, полей и последовательность смены событий.
    Основными свойствами пространства и времени являются: а) единство и неразрывная связь материи, пространства и времени; б) абсолютная непрерывность и относительная прерывность пространства и времени. Непрерывность проявляется в распространении материальных полей в пространстве всех тел и систем, в бесконечном следовании элементов длины при движении тела между двумя точками. Прерывность пространства относительна и проявляется в раздельном существовании материальных объектов и систем, каждая из которых имеет определенные размеры и границы. Прерывность времени характеризуется лишь временем существования качественных состояний материи, каждое из которых возникает и исчезает, переходя в другие формы; в) время обладает длительностью, однонаправленностью, необратимостью.
    Последовательно развивая новые, отличные от классических, представления о пространстве и времени, А. Эйнштейн в начале XX в. создал специальную теорию относительности (СТО). В рамках этой теории удалось согласовать принцип относительности с электродинамикой Максвелла. При этом новая теория не отменяла старую (ньютоновскую механику), а включала ее в себя как частный, предельный случай.