Свеча. Горение свечи

1) Зажгите одну обыкновенную цилиндрической формы свечу, которые используем для хозяйственных нужд. Наблюдайте за процессом горения свечи. Что дает нам горящая свеча?

2) Создайте такие условия, чтобы пламя свечи было спокойным. Рассмотрите внимательно устойчивое пламя свечи, опишите ваши наблюдения. Отразите форму свечи у фитиля.

3) Создайте в одном направлении небольшой ветерок (тихо подуйте), опишите ваши наблюдения. Какие изменения произошли со свечей?

4) Повторите п.2 и п.3 вашего эксперимента используя свечу не имеющую форму правильного цилиндра или покрытую желобками, или фигурную свечу, а так же ароматическую свечу, обыкновенной цилиндрической формы.

5) Опишите ваши наблюдения и сделайте выводы.

Выводы.

1) Воздух, находящийся над пламенем свечи нагревается, расширяется и становится менее плотным и более легким, чем окружающий его холодный воздух. Теплый воздух поднимается верх, а его место занимает холодный воздух. Происходит постоянный ток воздуха, струя которого охлаждает со всех сторон вещество, из которого сделана свеча, его внешний слой намного холоднее, чем середина. Середина плавится от пламени, доходящего по фитилю до того места, ниже которого оно гаснет. Наружная часть свечи не плавится.

2) Чашечка правильной формы образуется благодаря равномерному восходящему потоку воздуха, действующему на всю внешнюю поверхность свечи и не дающему ей разогреться.

3) При горении свечи, не имеющей правильной формы, и покрытую желобками, не получается чашечка с ровными краями, из-за неравномерности тока воздуха и плохой формы чашечки, которая при этом образуется, поэтому вниз по свечке стекает парафин, образуются потеки.

4) При горении ароматической свечи по комнате распространяется запах цитрусовых фруктов благодаря очень интересному и важному физическому явлению - диффузии (взаимного проникновения молекул одного вещества между молекул другого вещества).

5) Горючее попадает в пламя благодаря такому явлению как смачивание (притяжение молекул друг к другу твердого тела и жидкости). Фитиль, пропитанный воском или парафином, изготавливают из хлопчатобумажных нитей, которые имеют капилляры диаметром меньше волоса. По этим капиллярам жидкость поднимается вверх за счет дополнительного возникающего давления. Горючее переносится к тому месту, где происходит сгорание, и притом не как-нибудь, а идеально к центру пламени.

(Все выводы обобщающие ответы учащихся на слайдах)

Опыт №2 . « Изучение строения пламени»

Порядок выполнения работы (Инструктаж ТБ)

1) Еще раз зажжем свечу и рассмотрим, какое строение имеет пламя. Выделите три зоны: нижняя часть пламени, средняя часть и внешняя часть пламени. Постарайтесь заметить, что каждая зона отличается друг от друга цветом. Опишите цвет пламени каждой из зон, заполните таблицу 1.

2) Пронаблюдайте различие температуры каждой зоны. Для этого вносите спички в разные зоны пламени и обратите внимание на скорость воспламенения спичечной головки. Время воспламенения фиксируйте с помощью секундомера, заполните графы таблицы 1.

Таблица 1

Ответ учащихся: Строение пламени? Пламя имеет несколько вытянутый вид, вверху оно ярче, чем внизу около фитиля.

Цвет пламени?

Время воспламенения? (заполняем таблицу на доске).

Учитель: (Обобщение ответов учащихся на слайдах). При внесении спички в нижнюю зону пламени воспламенение происходит за 1.04 секунд; при внесении спички в среднюю зону пламени воспламенение происходит за 0,9 секунд; при внесении спички во внешнюю часть пламени воспламенение происходит за 0,1 секунд. Следовательно, нижняя зона имеет более низкую температуру, а средняя и внешняя зоны имеют более высокие температуры. Используя справочную литературу отмечаем: нижняя зона имеет температуру 7000 С, средняя зона имеет 11000 С, внешняя имеет 14000 С. Можно сделать для себя вывод, что для быстрого нагревания чего – либо необходимо использовать верхнюю часть пламени и не только свечи.

(вывод на слайдах)

Чтобы убедиться, что различные зоны пламени имеют разную температуру, можно провести и другой опыт. Поместить лучинку (или очищенную спичку) в пламя так, чтобы она пересекала все три зоны. Мы увидим, что лучинка сильнее обуглилась там, где она попала в среднюю и верхнюю зоны. Значит, пламя там более горячее. (совместно с учителем)

Опыт №3 «Обнаружение продуктов горения в пламени» (совместно с учителем) (Инструктаж ТБ)

Порядок выполнения работы

Определим состав каждой зоны пламени свечи.

Учитель: В ходе проведения двух первых экспериментов вы наблюдали за процессом горения и отметили для себя, что в нижней зоне пламени свечи находится газообразный парафин. Запишите это в своей таблице и переходите к выполнению №3 опыта.

(вывод на слайдах)

1) В среднюю зону пламени свечи внесем пластину из жести, закрепленную в держателе, и подержим 5-7 с. Быстро поднимем пластинку. Нижняя плоскость пластинки закоптилась.

Вывод: Нижняя плоскость пластинки из жести закоптилась, так как парафин сгорает не полностью, в результате образовалась сажа – это чистый углерод. (вывод на слайдах)

2) Сухую, охлажденную, но не запотевшую пробирку закрепим в держателе, перевернем вверх дном и подержим над пламенем до запотевания.

На стенках пробирки появляются меленькие капельки воды. Затем, в эту же пробирку быстро перельем известковую воду.

Вывод: В пробирке конденсируется вода. После того, как в пробирку перельем известковую воду, замечаем, что известковая вода мутнеет. Следовательно, продуктами горения парафина свечи являются углекислый газ и вода. Составим схему горения парафиновой свечи :

Парафин + кислород = вода + углекислый газ. (на слайде)

По итогам проведенного опыта составим таблицу. (работа у доски)

Таблица 2

Учитель: Давайте, еще раз определим, чем же поддерживается процесс горения свечи. Для этого выполним следующий опыт № 4.

Опыт № 4 « Влияние воздуха на горение свечи»

Оборудование: свеча, стакан, стеклянная банка емкостью 0,5 литра, стеклянная банка емкостью 3 литра.

Порядок выполнения работы.

1. Зажгите свечу и накройте ее стаканом, измерьте время её горения.

2. Зажгите свечу и накройте ее стеклянной банкой емкостью 0,5 литра и измерьте время горения.

3. Зажгите свечу и накройте ее стеклянной банкой емкостью 3 литра и измерьте время горения.

4. Данные представьте в виде таблицы и сделайте вывод.

Таблица 3

Вывод. Горение свечи зависит от кислорода, который содержится в воздухе и чем больше объем воздуха, тем дольше горит свеча. (вывод на слайдах)

Введение…………………………………………………………………………………………………………………………..……..1

I Литературный обзор

    1. История создания свечи……………………………………………………………………………………………………2

      Виды свечей……………………………………………………………………………………………………………………...3

      Мыловарение……………………………………………………………………………………………………………….…..4

II Экспериментальная часть

2.1 Физический анализ свеч………………………………………………………………………………………….………..5

2.2 Где самая горячая часть свечи?………………………………………………………………………………….…….6

2.3 Что горит в свече? ……………………………………………………………………………………………………………..6

2.4 Химический анализ продуктов сгорания свечи………………………………………………………….…….6

III Изготовление и практическое применение свечей

3.1 Изготовление свеч……………………………………………………………………………………………………………..7

3.1.1 Восковая свеча

3.1.2 Парафиновая свеча

3.1.3 Стеариновая свеча

3.2 Получение мыла из стеарина………………………………………………………………………………………….…8

Выводы……………………………………………………………………………………………………………………………………..8

Заключение

Список литературы

Приложения

Введение

Хотя свечи давно уже вытеснены электрическими лампами, они по-прежнему в ходу и создают праздничное настроение на Новый год, а порой выручают во время неожиданного отключения электричества. В настоящее время свечи можно найти самых различных цветов и форм. Их применяют в декоративных целях, для ароматизации помещений, для измерения времени. Свечи нашли свое применение и в религии. Церковные свечи и свечи в буддизме имеют тонкую удлиненную форму и сделаны из воска. Тему свечей, игры света и тени использовали в своём творчестве многие знаменитые художники. Перу Бориса Пастернака принадлежит написанное в 1946-м году известное стихотворение «Зимняя ночь», главным действующим лицом которого является свеча. Такие магические и притягивающие, известные человеку с глубокой древности они стали темой моего проекта.

Актуальность исследования: Свечи возникли в глубокой древности, но и сейчас они по-прежнему пользуются популярностью: создают праздничное настроение на Новый год и спасают нас во время неожиданного отключения электричества. Несмотря на то, что свеча это самый обычный предмет для нас мы мало что знаем о ней.

Задачи исследования:

    Проанализировать научную литературу по данной теме

    Сравнить физические свойства свечей из различных материалов

    Выяснить где самая горячая часть пламени и что именно горит в свече.

    Провести химический анализ продуктов сгорания свечей из различных материалов

    Сделать свечи различных материалов своими руками

    Изготовить мыло

I Литературный обзор

1.1 История создания свечи.

Свечи были изобретены человеком очень давно, однако долгое время применялись лишь в домах богатых людей и стоили дорого. Горючим материалом для свечи может служить: сало, стеарин, воск, парафин, спермацет или другое вещество с подходящими свойствами (легкоплавкость, горючесть, твердое). Прототипом свечи являются чаши, наполненные маслом или жиром, с щепочкой в качестве фитиля (позднее стали использовать фитильки из волокна или ткани). Такие светильники давали неприятный запах и очень сильно коптили. Первые свечи современной конструкции появились в Средневековье и изготавливались из жира (чаще всего) или из воска. Восковые свечи долгое время были очень дороги. Чтобы осветить большое помещение, требовались сотни свечей, они чадили, черня потолки и стены. В XV веке медленно начала возрастать популярность пчелиного воска как горючего материала для свечей. В XVI-XVII веках американскими колонистами было изобретено получение воска из некоторых местных растений, и свечи, произведенные этим способом, временно набрали большую популярность - они не дымили, не таяли так сильно как сальные, однако их производство было трудоемким, и популярность вскоре сошла на нет. Развитие китобойной промышленности в конце XVIII века внесло первые существенные изменения в процесс производства свечей, потому что спермацет (воскоподобный жир, получаемый из верхней части головы кашалота) стал легко доступным. Спермацет горел лучше, чем жир и при этом не дымил, и в общем был ближе к пчелиному воску по свойствам и преимуществам. Большинство изобретений, повлиявших на свечное дело, относится к XIX веку. В 1820 г французский химик Мишель Шевроль открыл возможность выделения смеси жирных кислот из животных жиров - т. н. стеарина. Стеарин, иначе иногда называемый стеариновым воском из-за подобных воску свойств, оказался твёрдым, жёстким и горел без копоти и почти без запаха, а технология его производства не являлась затратной. И как следствие, вскоре стеариновые свечи почти полностью вытеснили все другие виды свечей, было налажено массовое производство. Примерно тогда же была освоена технология пропитки фитилей свечей борной кислотой, что избавляло от необходимости часто снимать остатки фитиля (если их не снимать, они могли затушить свечу). Ближе к началу XX века химики смогли выделить нефтяной воск - парафин. Парафин чисто и ровно горел, практически не давая запаха (сильный запах имел лишь дым, образующийся при тушении свечи, но этот запах не был сильно неприятным), и его было дешевле производить, чем любое другое горючее вещество для свечей, известное к тому времени. Единственным его недостатком была низкая температура плавления (по сравнению со стеарином), из-за чего свечи имели свойство оплывать раньше, чем сгорают, но эта проблема была решена, после того, как в парафин начали добавлять более твёрдый и тугоплавкий стеарин. Даже при внедрении электрического освещения довольно долгое время в начале XX века парафиновые свечи только набирали популярность, этому способствовало бурное развитие нефтяной промышленности в то время. Со временем их значение в освещении сменялось на декоративное и эстетическое.

На сегодняшний день парафиновые свечи среди свечей являются почти единственным видом. Свечи делают из смеси высокоочищенного (снежно-белого или слегка прозрачного) парафина с небольшим количеством стеарина, либо из малоочищенного (желтого) парафина, как с добавкой стеарина, так и без нее. Первые более эстетичны и менее пахучи, вторые не так сильно оплывают. Изредка производятся свечи из неочищенного парафина (красно-желтого) без добавок, которые очень сильно оплывают, и поэтому не пользуются спросом.

1.2 Виды свечей

При изготовлении свечей используются:

Парафин - воскоподобная смесь предельных углеводородов (минеральный воск) состава от С 18 Н 38 до С 35 Н 72 . Обладает низкой химической активностью и плохо растворяется в воде. Продукт перегонки нефти - наиболее популярен как материал для свечей, и в том или ином виде входит в состав большинства свечей. В XIX веке существенно потеснил стеарин, как свечной материал.

Пчелиный воск - натуральный продукт производства пчёл. Простые липиды (сложные эфиры высших жирных кислот и высших высокомолекулярных спиртов). Пчелиный воск состоит главным образом из эфира и пальмитиновой кислоты и мирицилового спирта. Воск очень устойчив, нерастворим в воде, но хорошо растворим в бензине, хлороформе, эфире. Свечи из пчелиного воска горят дольше и ярче, чем парафиновые, и предпочитаются ценителями, поскольку являются натуральными. Ввиду большей стоимости восковых свечей, нередко свечи изготавливают не целиком из пчелиного воска, а добавляют его к другим материалам для продления времени горения свечи и имитации натурального аромата. Воск, использующийся для свечей, бывает разных видов.

Стеарин - стеариновая кислота с примесью пальмитиновой, олеиновой и других насыщенных и ненасыщенных жирных кислот. Добавляется в парафин, чтобы тот сильнее сжимался и при остывании, отлитые из него свечи было легче извлечь из формы. Также стеарин препятствует оплыванию свечей. Некоторое время стеарин был основным материалом для изготовления свечей, пока не научились извлекать парафин из сырой нефти.

Глицерин - используется в смеси с желатином и танином. Свечи из глицерина получаются совершенно прозрачные, разными красителями им можно придать любой цвет. Внутри глицериновой свечи можно помещать разнообразные композиции из цветного парафина, что придаёт свече необыкновенные декоративные свойства.

Жир , например говяжий. В некоторых странах из-за борьбы с полнотой этому жиру пытаются найти другое применение, кроме пищевого. В жировые свечи обычно добавляют натриевую селитру (до 5 %) и алюмокалиевые квасцы (до 5 % по весу). Свечи горят чисто, без дыма и копоти.

1.3 Мыловарение

Мыло было изобретено намного раньше пороха и бумаги, неизвестно когда и неизвестно кем. Оно получилось впервые, когда расплавленный жир, стекая с жарящегося мяса, падал на древесную золу. Жир тут же частично гидролизовался, образуя жирные кислоты, которые соединялись с солями натрия и калия в золе. Эти соединения и были собственно мылом. Это первое поверхностно-активное вещество. На научную основу производство мыла было поставлено в начале XIX века. Этому способствовали многочисленные исследования французского химика М.Шевраля в области химии жиров. Шеврель установил, что основа любого мыла- жиры это химические соединения глицерина с высшими жирными кислотами. В середине XIX века химики могли точно назвать состав всех полученных и применяемых мыл. С тех пор производство мыла не претерпело принципиальных изменений. Очищающее действие мыла – сложный процесс. Молекула соли высшей карбоновой кислоты имеет полярную ионную часть (-СОО Na ) и неполярный углеводородный радикал. Полярная часть молекулы растворима в воде (гидрофильна), а неполярная- в жирах и других малополярных веществах (гидрофобна). В обычных условиях частицы жира или масла слипаются между собой, образуя в водной среде отдельную фазу. В присутствии мыла картина резко меняется. Неполярные концы молекулы мыла растворяются в каплях масла, полярные карбоксилат-анионы остаются в водном растворе. В результате отталкивания одноименных зарядов на поверхности масла оно разбивается на мельчайшие частицы, каждая из которых имеет ионную оболочку из анионов- СОО - . Наличие этой оболочки предохраняет частицы от слияния, в результате чего образуется устойчивая эмульсия масла в воде. Эмульгирование жира и сала, содержащих грязь, и обусловливает очищающее действие мыла.

II Экспериментальная часть

2.1 Физический анализ свеч

Для физического анализа взяли свечи из различных материалов и сравнили их свойства

Наблюдения

Восковая свеча

Парафиновая свеча

Стеариновая свеча

Внешний вид свечи

Твердое вещество желто-бурого цвета

Твердое вещество грязно-белого цвета

Твердое вещество белого цвета

Время горения свечи

Горит дольше

Горит меньше

Горит дольше

Наличие запаха при горении

Выделяет слабый медовый запах

Нет

Нет

Образование копоти при горении

Коптит меньше

Коптит больше

Коптит меньше

Яркость пламени

Практически одинаковая

Оплывание свечи при горении

Оплывает меньше

Оплывает больше

Оплывает меньше

2.2 Где находится самое горячее место пламени

На первый взгляд кажется- в самом центре. Мы проверили это, подержав над серединой пламени свечи, поперек ему, лист бумаги. В комнате не должно быть сквозняков, чтобы пламя было ровным и не колебалось.

Результаты исследования

На бумаге появилась обугленная область в форме кольца. Оно было тем уже, чем выше держали бумагу, и превратилось в сплошное пятно на уровне верхней трети пламени- там и находится самое горячее его место. Этот, казалось бы, странный результат окажется совершенно очевидным, если вспомнить, что для горения необходим кислород. В пламя он поступает только с периферии, и только там идет реакция горения. Поэтому и температура пламени в различных его частях различна.

2.3 Что горит в свече

Вероятно, материал, из которого он изготовлен (парафин, стеарин или воск). Но если мы перевернем горящую свечу- то материал потечет по фитилю и, вместо того, чтобы вспыхнуть, погасит его. Так что же горит в свече? Мы осторожно задули свечу, слегка дохнув на нее. От фитиля потянулась тонкая струйка голубоватого дымка. Поднесли к ней спичку.

Результаты исследования

Пламя по этой струйке с расстояния 1-2 сантиметра перескочило на фитиль и свеча загорелась вновь. То, что мы приняли за дым, были пары парафина (стеарина или воска)- именно они горят в свече. Расплавленный материал парафин (стеарин или воск) поднимается по фитилю, как вода по тонкому капилляру. Пламя спички его испаряет и зажигает пары. Фитиль служит только «трубопроводом», подающим горючее в «топку»,- язычок пламени.

2.4 Химический анализ продуктов сгорания свечи

Обнаружение сажи: закрепили предметное стекло в держателе, внесли в зону темного конуса горящей свечи и подержали 3 секунды. Быстро подняли стекло и осмотрели нижнюю плоскость. Темное пятно укажет на наличие сажи.

Обнаружение воды: сухую пробирку закрепили в держателе, перевернули вверх дном и подержали над пламенем до запотевания. Запотевшая стенка пробирки укажет на образование воды

Обнаружение углекислого газа: в ту же пробирку прилили 2 мл известковой воды. По помутнению известкой воды судили об образовании углекислого газа.

Результаты исследования

Продукты сгорания

Восковая

Парафиновая

Стеариновая

Сажа

+

+

+

Вода

+

+

+

Углекислый газ

+

+

+

Уравнения реакции горения

Восковая свеча 2 C 15 H 31 COOC 31 H 63 + 139 O 2 =94 CO 2 + 94 H 2 O

Парафиновая свеча 2 C 16 H 34 +49 O 2 =32 CO 2 + 34 H 2 O C 17 H 36 + 26 O 2 =17 CO 2 + 18 H 2 O

Стеариновая свеча C 17 H 35 COOH+ 26O 2 =18O 2 + 18H 2 O

III Изготовление и практическое применение различных видов свеч.

3.1 Изготовление свеч своими руками

3.1.1 Восковая свеча

Восковую свечу сделали из пчелиного воска. Пчелиный воск можно купить у продавцов меда. Для изготовления мы выбрали метод «сучения»: фитиль натягивают горизонтально и равномерно облепляют его воском, размягченный в теплой воде. Когда заготовка достигнет нужной толщины, ее начинают катать по гладкой доске плоской дощечкой, чтобы придать будущей свече цилиндрическую форму. Затем свечу обрезают снизу и вытягивают ее верхушку.

3.1.2 Парафиновая свеча

Так как получить парафин самостоятельно не представляется возможным, то для изготовления парафиновой свечи нужного размера мы взяли готовую парафиновую свечу и методом отливки изготовили из нее новую. Для этого изготовили форму и закрепили в ней фитиль. Форму можно изготовить из любого материала, выдерживающего нагрев до 50 градусов. Стенки формы смазали жидкостью для мытья посуды и дали ей подсохнуть. Нагретый на водяной бане до жидкого состояния парафин осторожно залили в форму и дали ему остыть. Чем медленнее остывает парафиновая свеча, тем меньше вероятности, что она растрескается. После полного остывания аккуратно вынули свечу из формы.

3.1.3 Стеариновая свеча

Вначале получили концентрированный раствор мыла. Для этого мыло измельчили на терке. Мыльные стружки поместили в емкость, прибавили воды и нагрели, перемешивая деревянной палочкой, до полного растворения. После этого, по-прежнему нагревая и перемешивая раствор, влили уксус. После добавления кислоты на поверхности сразу же всплыла белая масса. Это стеариновая кислота. Реакционная смесь должна иметь кислую реакцию, иначе не все мыло прореагирует с кислотой. Поэтому кислоту нужно брать в избытке. Реакцию среды легко проверили по лакмусовой бумажке. После того как смесь остыла, стеарин собирали на поверхности. Образовавшаяся жидкость под стеарином – раствор сульфата или ацетата натрия. Стеарин вычерпали ложкой и промыли водой, чтобы убрать избыток кислоты. Высушили массу и завернули с тряпочку. Стеарин готов! Свечку из стеарина можно сделать в форме, закрепив в ней заранее фитиль и выливая в форму расплавленный стеарин. А еще свечку можно приготовить маканием, тогда и формы не надо. В расплавленный стеарин опускают фитиль (можно взять нитку от фитиля для керогаза или керосинки). Вынимаю фитиль, и когда стеарин на нем затвердеет, вновь опускают его в раствор. Эту операцию повторяют несколько раз, пока на фитиле не нарастет свечка нужной толщины. Уравнение реакции получения стеарина из мыла: C 17 H 35 COONa + CH 3 COOH = C 17 H 35 COOH + CH 3 COONa

3.2 Получение мыла из свечи

Взяли несколько кусочков стеариновой свечи. Расплавили стеарин на водяной бане и добавили насыщенный раствор соды. Тотчас образовалась твердая белая масса. Это стеарат натрия, то есть собственно мыло. Несколько минут нагревали смесь, чтобы реакция прошла как можно полнее. Затем подставили форму (спичечный коробок) и залили полученную массу. После того, как мыло остыло вынули его из формы. Уравнение реакции получения мыла из стеарина: 2 C 17 H 35 COOH + Na 2 CO 3 =2 C 17 H 35 COONa + H 2 O + CO 2 .

Выводы:

    Проанализировала и изучила научную литературу по данной теме

    Сравнила физические свойства свеч из различных материалов: наиболее лучшими физическими свойствами обладают восковая и стеариновая свеча.

    Самая горячая часть находит на уровне верхней трети пламени свечи. Причиной горения свечи является не горение материала, а образование паров при сгорании.

    Исходя, из химического анализа продуктов сгорания выяснила, что все они образуют сажу, воду и углекислый газ т.е являются органическими веществами.

    Изготовила свечи из различных материалов своими руками

    Сделала мыло из стеариновой свечи

Заключение

Наиболее лучшими физическими свойствами обладают восковая и стеариновая свеча: они не только меньше коптят и оплывают, но и дольше горят. У парафиновых свеч есть преимущество в стоимости (они немного дешевле восковых и стеариновых), поэтому они и являются самыми распространенными в нашей стране. Самая горящая часть находится на уровне верхней трети пламени, а горит в свече все-таки не материал, из которого он изготовлен, а пары, образующиеся при горении. Все свечи при горении образуют сажу, воду и углекислый газ, т.е являются органическими веществами.

Список литературы

    Майкл Фарадей «История свечи» 1982 г

    Габриелян О.Г. «Химия. 8 класс» Москва 2002 г

    Габриеля О.Г. «Химия. 10 класс» Москва 2014 г

    Журнал «Наука и жизнь», статья «Свеча горела на столе» №6,2014

    Журнал «Клуб юный химик», статья « Мыло из свечи и свеча из мыла»

    Журнал «Химия и жизнь», статья «Пока горят свечи»

  • 1. Копчение будет наблюдаться при недостаточном содержании кислорода в атмосфере горения. Как сделать, не знаю, м. б. добавить водяных паров.
    2. В большой банке кислород выгорел не полностью, а остался какой–то процент его, поэтому левая свеча горела дольше, чем в идеале.
  • Михаил,
    1. По первому вопросу нужно точное решение. Общее направление мысли правильное – горение при недостатке кислорода, но у меня так не получилось. Пробовал просто прикрывать банку крышкой, пламя просто постепенно гаснет, и все. Никакого копчения нет .
    2. Не думаю, что в большой банке останется кислород. Пламя вызывает сильное перемешивание во всем объеме. Горячий углекислый газ поднимается вверх – остывает от банки – опускается вниз. Плюс у него плотность в 1.5 раза больше, чем у воздуха, поэтому тоже будет опускаться вниз.
  • По видемому часть углекислого газа ушла вниз из 3 литровки. Скорее всего опыт удастся, если банку гермитизировать отрезком пластиковой крышки и перевернуть перед тем, как закрыть картонкой.
    P. S.
    CO2 = 46
    Воздух = 29
    Итого разница в 1,5 раза
    Зажечь свечу можно например химической реакцией марганцовки с серной кислотой
    KMnO4 + H2SO4 (конц.)
    получившийся оксид при взаймодействии с парафином воспламенит его
  • По процедуре: думаю, ответы надо было скрывать, чтобы "вторые" не видели ответы "первых", чтобы не было споров – соревнование ведь

    По существу: в башке больше ничо нет, шерстить инет щас нет возможности...

  • Михаил, открытость комментариев – это нормально. Все равно засчитывается первый верный ответ.
    Инет щерстить не надо, тут больше логики и базовых знаний физики и химии. Ну и, естественно, представлять в голове все нюансы эксперимента.
  • По второму вопросу: – "Почему левая свеча горит так долго? " почему то до сих пор нет комментария про интенсивность горения, если посмотреть по видео заметно, что при горении с большим количеством углекислого
    газа пламя меньше.
    По первому вопросу, есть предположение, возможно свеча будет коптить, когда фитиль длинный, т. е. фитиль горит и сжигает вокруг кислород.
  • Сергей, согласен. Количественную оценку тут очень трудно сделать. Кто сказал, что пламя у обеих свеч горит одинаково интенсивно? На глазок, вроде бы одинаково, но, может быть, одна потребляет больше кислорода, чем вторая. И второе – сами процессы затухания пламени. В итоге, получается, что мы можем дать только качественную ("да, левая свеча горит меньше"), но никак не количественную оценку.
  • Андрей 4 августа 2010, 06:01
    По поводу горения. Свеча "съедает" не весь кислород, а очень мало. У меня была необходимость организовать безкислородную атмосферу, и я как раз думал сделать её свечой, но на форумах "пещерников" прочитал, что если в закрытой пещере погасла свеча – значит, кислорода лишь на пару процентов меньше. Ну и углекислого газа там процента два–три, что ли? Не помню.
    Ну, а кроме того, есть ещё такая вещь, как конвекция. Углекислый газ тяжелее воздуха и собирается снизу, а воздух сверху, таким образом, получается несколько богаче кислородом. Вот это и позволило свече прогореть подольше
    А как сделать, чтобы она коптила – навскидку и не скажу, поиграться надо.
  • Андрей , не понял как связана мысль про конвекцию и про то, что "Углекислый газ тяжелее воздуха и собирается снизу, а воздух сверху, таким образом, получается несколько богаче кислородом" . Если идет сильная конвекция от пламени, как я писал выше – тогда все внутри банки быстро перемешивается, и нет роли, где что собирается.

    Anatoly , также можно внести любой предмет в среднюю зону пламени, где происходит неполное сгорание. Тогда копоть осаждается на предмете. Именно так коптят стекла. А еще это можно пронаблюдать вот здесь:

    Тут отлично видно, как закоптился стержень и полиэтиленовый пакет.

    До сих пор жду последний правильный ответ, откуда в закрывающей банке мог взяться лишний кислород . Подсказка: думать в сторону теплового расширения газов.

  • (попал т. к. в банке стало понижаться давление)
  • По поводу первого вопроса–ответ думаю уже есть. Нужно сделать какие–нить манипуляции, чтобы происходило неполное окисление: это может быть к примеру поднесенный какой–нить предмет–пары горящего парафина будут резко охлаждаться, не успевая полностью сгореть(это пока предмет холодный). Если не ошибаюсь, то вроде может получиться с добавлением некоторых химических веществ на фитиль свечи.
    По поводу второго пункта:
    Вообще, горение свечи в таком случае можно рассматривать как инерционное звено n–го порядка. В самом простом случае, если скорость сгорания кислорода прямопропорциональна(хотя она может быть пропорциональна квадрату, кубу... концетрации). В таком случае, чем меньше кислорода в банке, тем медленнее он и сгорает. В общем случае VCO2(t)=K1*e^(–k2/t). Это нелинейное уравнение содержания углекислого газа объясняет, почему при "чистом" воздухе в 0,5 литра свеча будет гореть в два раза дольше, чем при 2,5 литрах–просто сначала горение будет очень интесивное и за первые 10 секунд используется почти 2 литра воздуха и останется как во втором случае только 0,5 литра, которые и будут догорать еще 30 секунд.
  • esfir 2 января 2014, 06:37
    Цитата:"Восковые свечи должны иметь рыхло сплетенный фитиль из толстых волокон, для всех остальных свечей фитили делают из туго сплетенных нитей. Это связано с вязкостью свечной массы в расплавленном состоянии: для вязкого воска нужны широкие капилляры, а легкоподвижные парафин, стеарин и жиры требуют более тонких капилляров, иначе из-за избытка горючего материала свеча станет сильно коптить."
    Вариант: подложить в расплавленный около фитиля парафин кусок рыхлой веревки.
  • Я замечал, что коптить начинает тогда, когда фитиль смочен немного, т.е. температура нагрева самого фитиля ниже средней при горении сухих фителей. Само же пламя, естественно, при этом имеет нормальную температуру, т.к. горит кислород, а фитиль только лишь поддерживает горение. Надо плюнуть на палец, провести по фитилю и поджечь -- будет коптить
  • Все это очень интересно. Но, "великие умы"сможете ли вы ответить на другой вопрос? Пока свеча горит, она не пахнет. И это нормально, ведь чистая вода и углекислый газ не имеют запаха. Но! Стоит погасить свечу, как вы получите сильный неприятный запах! При неполном сгорании образуется та же вода, чистый углерод С и CO вместо CO2, но С и CO тоже не имеет запаха. Тогда что так сильно воняет, когда мы тушим свечку?
  • 5 января 2017, 06:15
    Павел, как я понимаю, это пахнут продукты неполного сгорания парафина. То есть в момент гашения свечки должен быть довольно большой диапазон всяких молекулярных соединений.

Форма проведения урока: исследование с элементами межпредметной интеграции.

Нельзя кого-либо изменить, передавая ему готовый опыт.
Можно лишь создать атмосферу, способствующую развитию человека.
К.Роджерс

Цель урока: посмотреть на пламя свечи и на саму свечу глазами исследователя.

Задачи урока:

Начать формирование важнейшего метода познания химических явлений – наблюдения и умения описывать его;

Показать в ходе практической работы существенные отличия физических и химических реакций;

Актуализировать опорные знания о процессе горения с учетом материала, усвоенного на уроках других учебных дисциплин;

Проиллюстрировать зависимость реакции горения свечи от условий проведения реакции;

Начать формирование простейших приемов проведения качественных реакций по обнаружению продуктов горения свечи;

Развивать познавательную активность, наблюдательность, расширять кругозор в области естественнонаучного и художественно- эстетического познания действительности.

Этапы урока:

I Организационный момент. Вступительное слово учителя.

Свеча? - традиционное приспособление для освещения, представляющее собой чаще всего цилиндр из твердого горючего материала (воск, стеарин, парафин) служащий своего рода резервуаром твёрдого топлива, подводимого в расплавленном виде к пламени фитилём. Предки свечи - светильники; чаши, наполненные растительным маслом или легкоплавким жиром, с фитилем или просто щепочкой для подъёма горючего в зону горения. Некоторые народы использовали в качестве примитивных светильников фитили, вставленные в необработанный жир (даже тушку) животных, птиц или рыб. Первые восковые свечи появились в Средневековье. Свечи долгое время были очень дороги. Чтобы осветить большое помещение, требовались сотни свечей, они чадили, черня потолки и стены. Свечи прошли огромный путь с момента их создания. Люди изменили их предназначение и сегодня у человека есть другие источники света в домах. Но, тем не менее, сегодня свечи символизируют праздник, помогают создать романтическую обстановку в доме, успокаивают человека, и являются неотъемлемой частью декора наших жилищ, принося с собой в дом комфорт и уют. Свечку можно изготовить из свиного или говяжьего жира, масел, пчелиного воска, китового жира, парафина, который получают из нефти. Сегодня легче всего встретить свечи, изготовленные из парафина. С ними мы сегодня и будем проводить опыты.

II Актуализация знаний учащихся.

Инструктаж. Правила по технике безопасности

Беседа:

Зажгите свечу. Вы увидите, как начинает таять парафин около фитиля, образуя круглую лужицу. Какой процесс здесь имеет место? Что происходит, когда горит свеча? Ведь парафин просто плавится. Но откуда тогда тепло и свет?

Что происходит, когда горит электрическая лампочка?

Ответы учеников.

Учитель:

Когда парафин просто плавится, нет ни тепла, ни света. Большая часть парафина сгорает, превращаясь в углекислый газ и водяной пар. Из-за этого и появляется тепло и свет. А от тепла часть парафина плавится, ведь он боится горячего. Когда свеча сгорит, парафина останется меньше, чем было вначале. Но когда горит электрическая лампочка, тоже выделяется тепло и свет, а лампочка не становится меньше? Горение лампочки – это не химическое, а физическое явление. Она горит не сама по себе, а превращает в свет и тепло энергию электричества. Как только электричество отключаешь, лампочка гаснет. А свечу стоит лишь зажечь, дальше она горит сама.

А теперь наша задача посмотреть на пламя свечи и на саму свечу глазами исследователя.

III Изучение нового материала.

Опыт “Строение свечи”

ЧТО ДЕЛАЛИ? ЧТО НАБЛЮДАЛИ? ВЫВОДЫ
1. Рассмотрели парафиновую и восковую свечу.

2. Отделили фитиль.

Свеча состоит из стержня и фитиля из туго скрученных ниток в центре столбика. Основу свечи составляет воск или парафин. Фитиль - это своеобразный капилляр, по которому расплав свечной массы попадает в зону горения.

Фитили сплетают из хлопчатобумажных нитей. Восковые свечи должны иметь рыхло сплетенный фитиль из толстых волокон, для всех остальных свечей фитили делают из туго сплетенных нитей. Это связано с вязкостью свечной массы в расплавленном состоянии: для вязкого воска нужны широкие капилляры, а легкоподвижные парафин, стеарин и жиры требуют более тонких капилляров, иначе из-за избытка горючего материала свеча станет сильно коптить.

Опыт “Изучение физических и химических процессов, происходящих при горении свечи”

ЧТО ДЕЛАЛИ? ЧТО НАБЛЮДАЛИ? ВЫВОДЫ
1.Зажгли свечу. 1.Горение свечи. Если поднести ладони к пламени чувствуется тепло. 1.Свеча - источник тепла, т.к. процесс сгорания газообразного парафина является экзотермическим.
2.Изучили последовательность процесса горения свечи. Наблюдали фазовые превращения, которые происходят со свечой. 2. Парафин начинает таять около фитиля и из твердого состояния переходит в жидкое состояние, образуя круглую лужицу. 2. При горении свечи наблюдаются фазовые превращения парафина (физические явления), осмотическое явление, химические превращения.
3. Вели наблюдение за хлопчатобумажным фитилем, выяснили его роль при горении свечи. 3. Свеча не горит вдоль всего фитиля. Жидкий парафин смачивает фитиль, обеспечивая его горение. Сам парафин не горит. Хлопчатобумажный фитиль перестает гореть на том уровне, где появляется жидкий парафин. 3. Роль жидкого парафина – не дать фитилю сгореть быстро, способствовать его долгому горению. Жидкий парафин возле огня испаряется, освобождая углерод, пар которого поддерживает горение. При достаточном количестве воздуха возле пламени оно горит ясно. Растопленный парафин гасит пламя, поэтому свеча не горит вдоль всего фитиля.

Опыт “Изучение строения пламени свечи. Обнаружение продуктов горения в пламени. Наблюдение за неоднородностью пламени”

ЧТО ДЕЛАЛИ? ЧТО НАБЛЮДАЛИ? ВЫВОДЫ
1.Зажгли свечу, поставленную в подсвечник. Дали ей хорошо разгореться. Пламя свечи имеет продолговатую форму. В разных частях пламени наблюдается разный цвет.

В спокойном пламени свечи выделяются 3 зоны. Пламя имеет несколько вытянутый вид; вверху оно ярче, чем внизу, где среднюю его часть занимает фитиль, и некоторые части пламени вследствие неполного сгорания не так ярки, как вверху.

Явление конвенции, теплового расширения, закона Архимеда для газов, а также закон всемирного тяготения с силами тяжести заставляют приобрести характерную конусовидную форму пламени.

Восходящий ток воздуха придает пламени продолговатую форму: т.к. пламя, которое мы видим, вытягивается под воздействием этого тока воздуха на значительную высоту.

2. Взяли тоненькую длинную щепку, которую держим горизонтально и медленно проводим ее сквозь самую широкую часть пламени, не позволяя ей загореться и сильно задымиться. На щепке остается след, оставленный пламенем. Над его внешними краями копоти больше, над серединой больше. Часть пламени, которая непосредственно прилегает к фитилю, состоит из тяжелого пара парафина – кажется, что она сине – фиолетового цвета. Это самая холодная часть пламени.

Вторую, самую светлую часть, создают раскаленные пары парафина и частички угля. Это самая горячая зона.

Третий, внешний слой содержит больше всего кислорода и светится слабо. Температура его достаточно высока, но несколько ниже температуры светлой части. Он как бы охлаждается окружающим воздухом.

3. Взяли кусок белого плотного картона, держим его горизонтально в руке, быстро опускаем его сверху на пламя горящей свечи. На верхней стороне картона появляется опалина от пламени. На картоне образовалась кольцевидная опалина, т.к. центральная часть пламени является недостаточно горячей, чтобы обуглить картон. Пламя имеет разные температурные участки.
4. В пламя свечи внесли стеклянную палочку. Пламя свечи имеет желтовато оранжевый цвет и светится.

На поверхности стеклянной палочки образуется копоть.

Светящийся характер пламени обусловлен степенью расходования кислорода и полнотой сгорания парафина, конденсацией углерода и свечением его раскалившихся частиц.

Копоть свидетельствует о неполном сгорании парафина и о выделении свободного углерода.

5. Сухую пробирку закрепили в держателе, перевернули вверх дном и держали над пламенем спиртовки. Стенки пробирки запотели. На стенках пробирки образуются капельки воды. Вода – продукт сгорания свечи.

Опыт “Изучение зависимости высоты пламени свечи от длины фитиля”

ЧТО ДЕЛАЛИ? ЧТО НАБЛЮДАЛИ? ВЫВОДЫ
1.Зажгли свечу. Фитиль свечи загорается, пламя свечи – высокое. Жидкий парафин смачивает фитиль, обеспечивая его горение. Сам парафин не горит. Роль жидкого парафина – не дать фитилю сгореть быстро, способствовать его долгому горению. Жидкий парафин возле огня испаряется, освобождая углерод, пар которого поддерживает горение. При достаточном количестве воздуха возле пламени оно горит ясно.
2. Подрезали часть подгоревшего фитиля Размеры пламени изменились, оно уменьшилось в размерах. Пламя опускается вниз по фитилю до расплавленного парафина и меркнет. В верхней части оно горит дольше. Часть парафина, более близкая к фитилю, от тепла плавится. Капли жидкого парафина притягиваются друг к другу слабее, чем к фитилю, и легко втягиваются в мельчайшие щели между нитками. Такое свойство вещества называется капиллярностью.

Опыт “Доказательство горения свечи в кислороде воздуха”

ЧТО ДЕЛАЛИ? ЧТО НАБЛЮДАЛИ? ВЫВОДЫ
1. Посреди тарелки поставили горящую свечку (тоненькую, небольшую, прикрепленную при помощи пластилина)

В тарелку долили подкрашенную воду (чтобы скрыло дно), свечу накрыли граненым стаканом.

Вода начинает забираться под стакан

Свечка постепенно гаснет.

Свеча горит, пока в стакане есть кислород. По мере расходования кислорода, свеча гаснет. За счет вакуума, который там образовался, вода поднимается вверх.

Горение – это сложный физико-химический процесс взаимодействия компонентов горючего вещества с кислородом, протекающий с достаточно большой скоростью, с выделением тепла и света.

Опыт “Влияние воздуха на горение свечи. Наблюдение за пламенем горящей свечи”

ЧТО ДЕЛАЛИ? ЧТО НАБЛЮДАЛИ? ВЫВОДЫ
Поднесли зажженную свечу к приоткрытой двери. 1. Поставили свечку на пол. 2. Осторожно встали на табуретку возле приоткрытой двери, держим зажженную свечу в верхней части двери.

1.Пламя отклоняется в сторону комнаты.

2. Пламя отклоняется в сторону коридора.

Теплый воздух наверху вытекает из комнаты, тогда как внизу холодный поток направлен внутрь нее.
3.Опрокинули свечку так, чтобы горючее стекало на фитиль. Свечка погаснет Пламя не успело нагреть горючее настолько, чтобы оно могло гореть, как это происходит наверху, где горючее поступает в фитиль в небольшом количестве и подвергается полному воздействию пламени.

Опыт “Изучение дыма погасшей свечи”

Опыт “Качественная реакция по обнаружению продуктов горения свечи”

ЧТО ДЕЛАЛИ? ЧТО НАБЛЮДАЛИ? ВЫВОДЫ
1.В стакан налили известковую воду.

Огарок свечи насадили на проволоку, чтобы его удобнее было опускать в стакан.

Известковую воду можно приготовить следующим образом: надо взять немного негашеной извести, разболтать ее в воде и процедить сквозь промокательную бумагу. Если раствор получится мутный, необходимо процедить его еще раз, чтобы он был совсем прозрачный.
2. Зажгли огарок свечи и опустили его осторожно на дно пустого стакана.

Вытащили огарок, зажгли его и снова опустили в банку.

Огарок некоторое время горит, а затем гаснет.

Огарок сразу же гаснет

В стакане находится газ без цвета и запаха, который не поддерживает горения и мешает свече гореть. Это - углекислый газ - СО 2. .
3. Добавили в стакан известковой воды. Вода в стакане становится мутной. При горении свечи образуется углекислый газ. Углекислый газ делает известковую воду мутной.

IV Закрепление изученного материала.

Фронтальный опрос:

Перечислите последовательность процессов горения свечи.

Какие фазовые превращения наблюдаются при горении свечи?

Что является горючим материалом свечи?

Для чего нужен хлопчатобумажный фитиль?

Какое явление позволяет поднимать жидкий парафин на некоторую высоту?

Где самая горячая часть пламени?

Почему происходит уменьшение длины свечи?

Почему пламя свечи не гаснет, хотя при горении образуются вещества, не поддерживающие горения?

Почему свеча гаснет, когда мы на нее дуем?

Какие условия необходимы для более длительного и качественного горения свечи?

Как можно погасить свечу? На каких свойствах основаны эти способы?

Что является качественной реакцией на углекислый газ?

Учитель:

Рассмотрение строения и горения свечи убедительно иллюстрирует сложность окружающих нас самых тривиальных бытовых предметов, свидетельствует о том, насколько неразрывны такие науки как химия и физика Свеча – настолько интересный объект изучения, что считать тему исчерпанной никак нельзя.

В заключение нашего урока хочу вам пожелать, чтобы вы, как и свеча, излучали свет и тепло для окружающих, и чтобы вы были красивыми, яркими, нужными, как пламя свечи, о котором мы с вами сегодня говорили.

V Домашнее задание.

1. Задание для желающих осуществить дома исследовательскую работу:

Возьмите для опыта любую вещь, где есть застежка – молния. Несколько раз откройте и закройте застежку молнии. Запомните свои наблюдения. Натрите парафиновой свечкой застежку молнии, например, на спортивной кофте. (Не забудьте спросить разрешения у мамы, когда будете брать кофту для опыта). Изменилось ли движение застежки молнии?

Ответьте на вопрос: “Зачем иногда натирают застежки молнии свечкой?”

(Вещества, из которых делают столбик свечки (стеарин, парафин), являются хорошей смазкой, которая уменьшает трение между звеньями застежки.)

2. Задание для желающих осуществить дома исследовательскую работу.

Возьмите 3 свечи разные по составу, сделанные из парафина, воска, стеарина. Свечи можно купить в магазине, а можно сделать самим. (Попросите маму или папу наблюдать с вами за прохождением опыта). Дождитесь сумерек, установите свечки недалеко друг от друга и подожгите их. Заполните таблицу, по мере наблюдения за горящими свечами.

Использованная литература.

1. Фарадей М.., История свечи, М., Наука, 1980.

В прибор, изображённый на рисунке, поместили небольшие кусочки кристаллического вещества Х белого цвета и налили жидкость Y . После того как открыли кран, жидкость Y опустилась из воронки в нижнюю часть прибора и пришла в соприкосновение с веществом X , началась реакция, сопровождающаяся выделением бесцветного газа Z . Газ Z по газоотводной трубке поступал в стакан, на дне которого были установлены зажжённые свечи различной высоты (см. рис. 1.1).

По мере заполнения стакана газом Z свечи гасли.

  1. Какой газ получали в приборе, изображённом на рисунке? Как называется этот прибор?
  2. Что могут представлять собой вещества X и Y ? Напишите уравнение возможной реакции между X и Y с образованием Z .
  3. Почему свечи начали гаснуть? В каком порядке они гасли? Почему? Находит ли это свойство газа Z какое-либо применение?
  4. Если газ Z пропускать в известковую воду, то сначала наблюдается помутнение, обусловленное выпадением осадка белого цвета. Однако дальнейшее пропускание Z приводит к полному растворению первоначально выпавшего осадка. Объясните данное явление, проиллюстрируйте свой ответ соответствующими уравнениями реакций.
  5. Если в сосуд, заполненный газом Z , внести горящий магний, то металл будет продолжать гореть. Какие вещества образуются? Составьте уравнение данной реакции.
  6. Известны вещества, которые реагируют с газом Z , при этом выделяется кислород. Приведите два примера таких веществ и соответствующие уравнения реакций.

Ответ:

  1. Получали углекислый газ (газ Z ) в аппарате Киппа.

2 балла

  1. Вещество X – нерастворимый карбонат, например карбонат кальция, в лабораторной практике часто используют кусочки мрамора. Y – кислота, образующая растворимые соли кальция, например соляная. Возможный вариант взаимодействия:

CaCO 3 + 2HCl = CaCl 2 + H 2 O + CO 2

1 балл

  1. Свечи гаснут, т. к. углекислый газ не поддерживает горение (0,5 балла ). Углекислый газ тяжелее воздуха, поэтому первой погаснет самая маленькая свеча, а за ней постепенно более высокие свечи по мере заполнения стакана CO 2 . (1 балл ) Это свойство углекислого газа используется в работе углекислотных огнетушителей. (0,5 балла )

2 балла

  1. При пропускании углекислого газа в известковую воду наблюдается образование осадка карбоната кальция:

Ca(OH) 2 + CO 2 = CaCO 3 ↓ + H 2 O

При избытке CO 2 осадок растворяется, т.к. образуется растворимая кислая соль:

CaCO 3 + CO 2 + H 2 O = Ca(HCO 3) 2

2 балла

  1. При горении магния в углекислом газе образуются оксид магния и сажа:

2Mg + CO 2 = 2MgO + C

1 балл

  1. Углекислый газ реагирует с пероксидами и надпероксидами:
  • 2Na 2 O 2 + 2CO 2 = 2Na 2 CO 3 + O 2
  • 4KO 2 + 2CO 2 = 2K 2 CO 3 + 3O 2

2 балла

Всего 10 баллов .

Задача 2 «Состав глауберовой соли»

Навеску частично выветрившейся глауберовой соли (кристаллогидрата сульфата натрия) массой 28,6 г растворили в воде и прибавили избыток раствора хлорида бария. Образовалось 23,3 г осадка. Определите формулу исходной соли.

Ответ:

Задача 3 «Анализ наследства»

Юный химик Вася решил исследовать некий сплав, доставшийся ему в наследство от бабушки. Для начала Вася попытался растворить сплав в соляной кислоте, однако обнаружил, что при этом никакого растворения не происходит. Тогда он попробовал растворить его в горячей концентрированной азотной кислоте. При этом сплав разрушился, раствор окрасился в голубой цвет, однако на дне остался окрашенный осадок, который не растворялся даже при длительном нагревании в азотной кислоте. Вася отфильтровал осадок и высушил его. Поместив порошок в тигель и нагрев его до плавления, а потом охладив, Вася сразу понял, какое вещество было нерастворимым осадком.

  1. Из каких двух металлов состоит сплав, который исследовал Вася?
  2. Как растворить осадок, образующийся при нагревании сплава в азотной кислоте? Приведите уравнение реакции.
  3. Как выделить второй компонент сплава из голубого раствора полученного после реакции с азотной кислотой? Приведите необходимые уравнения реакций.

Ответ:

  1. Медь (по цвету раствора) и золото (нерастворимость в азотной кислоте и характерный вид компактного металла) по 2 балла
  2. Растворение в царской водке 1 балл

Уравнение реакции:

Au + HNO 3 (конц.) + 4HCl(конц.) = H + NO + 2H 2 O 4 балла

(Подходят также варианты с соляной кислотой и хлором, селеновой кислотой, смесью азотной и плавиковой кислот и т.д. – оценивать полным баллом.)

  1. Любой разумный метод, например:

Fe + Cu(NO 3) 2 = Cu + Fe(NO 3) 2 1 балл

Всего 10 баллов .

Задача 4 «Изомерные реагенты и продукты»

Два изомерных углеводорода А и В содержат по 90,57 % углерода (по массе).

При окислении горячим подкисленным раствором перманганата калия A и B окисляются в вещества C и D , которые также являются изомерами, причём вещество С активно используется в производстве полимеров. Вещество С достаточно устойчиво при нагревании, а нагревание вещества D приводит к образованию вещества E , которое также можно получить окислением углеводорода F (массовая доля углерода 93,75%) кислородом на оксиде ванадия(V).

  1. Установите формулы веществ А F и напишите уравнения всех упомянутых реакций.
  2. Какой полимер получают на основе вещества С? Где он применяется?

Ответ:

Из массовой доли углерода находим брутто-формулу А и В :

ν(C) : ν(H) = (90,57/12) : (9,43/1) = 4: 5,

C 4 H 5 . Нечётного числа атомов водорода в углеводородах не бывает, поэтому молекулярная формула А и В – С 8 Н 10 . Это могут быть этилбензол или диметил-бензолы (ксилолы). Изомерные продукты окисления могут образоваться только из ксилолов.

Вещество C – продукт окисления А – используется в производстве полимеров, наиболее вероятно, что это терефталевая кислота, тогда А – 1,4-диметилбензол (пара-ксилол).

Вещество D – продукт окисления B – при нагревании отщепляет воду, наиболее вероятно, что это – фталевая кислота, которая при нагревании превращается в циклический ангидрид, тогда B – 1,2-диметилбензол (орто-ксилол).

Брутто-формула углеводорода F :

ν(C) : ν(H) = (93,75/12) : (6,25/1) = 5: 4,

C 5 H 4 , однако в реакциях окисления не происходит увеличения количества атомов углерода, следовательно, F содержит минимум 8 атомов углерода.

Удваивая индексы получаем, что F – С 10 Н 8 , нафталин.

Уравнения реакций:



Полимер – полиэтилентерефталат (ПЭТ) – применяется, например, для производства пластиковых бутылок.

Система оценивания:

Задача 5 «Изомерные реагенты, но разные продукты»

Два изомерных углеводорода А и B при присоединении брома образуют 1,2,3,4 – тетрабромбутан и 1,1,2,2 – тетрабромбутан соответственно. Углеводород А при жёстком окислении деструктурируется до углекислого газа. Углеводород B в тех же условиях даёт пропановую кислоту и углекислый газ.

  1. Определите строение изомеров А и B .
  2. Приведите уравнения реакций бромирования изомеров А и B .
  3. Приведите уравнения реакций жёсткого окисления изомеров А и B . Объясните, почему в условиях жёсткого окисления изомер А деструктурируется до углекислого газа.
  4. Предложите качественные реакции, с помощью которых можно отличить изомеры А и B .

Ответ:

1. Изомер А : H 2 C = CH – CH = CH 2 бутадиен–1,3

Изомер B : НС ≡ С – CH 2 – CH 3 бутин-1

2. Бромирование изомеров А и B

А : H 2 C = CH – CH = CH 2 + 2Br 2 CH 2 Br – CHBr – CHBr – CH 2 Br

1,2,3,4 – тетрабромбутан

B : НС ≡ С – CH2 – CH 3 + 2Br 2 CHBr 2 – CBr 2 – CH 2 – CH 3

1,1,2,2 – тетрабромбутан

3. Жёсткое окисление изомеров А и B можно осуществить, используя в качестве окислителя подкисленный раствор перманганата калия или хромовую смесь (K 2 Cr 2 O 7 ∙H 2 SO 4).

А : 5H 2 C = CH – CH = CH 2 + 22KMnO 4 + 33H 2 SO 4 20CO 2 + 11K 2 SO 4 + 22MnSO 4 + 48H 2 O

При энергичном окислении на промежуточной стадии реакции окисления бутадиена-1,3 образуются углекислый газ и щавелевая кислота. Эта дикарбоновая кислота проявляет восстановительные свойства и окисляется в оксид углеродаIV. (Эта реакция используется в аналитической химии для установления точной концентрации перманганата калия.)

H 2 C = CH – CH = CH 2 НООС – СООН НСООН CO 2 + H 2 O

B : 5НС ≡ С – CH 2 – CH 3 + 8KMnO 4 + 12H 2 SO 4 5CO 2 + 5CH 3 – CH 2 –COOH + 4K 2 SO 4 + 8MnSO 4 + 12H 2 O

4. Реакции для идентификации изомеров А и B . При взаимодействии терминальных алкинов с аммиачным раствором оксида серебра или хлорида

меди(I) легко образуются ацетилениды серебра или меди, которые выпадают из раствора в осадок.

НС ≡ С – CH 2 – CH 3 + OH AgС ≡ С – CH2 – CH 3 + 2NH 3 + H 2 O

НС ≡ С – CH 2 – CH 3 + Cl CuС ≡ С – CH 2 – CH 3 + NH 4 Cl + NH 3

Изомер А подобных реакций не даёт.

Система оценивания:

Задача 6 «Качественный анализ»

В четырёх пронумерованных пробирках находятся растворы фенола, ацетата натрия, глюкозы и ацетамида (амида уксусной кислоты). Определите содержимое каждой пробирки, выбрав для анализа подходящие реактивы.

Для решения задачи составьте таблицу результатов мысленного эксперимента, в которой будут указаны визуальные признаки происходящих реакций.

Схема таблицы:

Органические соединения

Реактивы

Фенол Ацетат натрия Глюкоза

Ацетамид

Приведите уравнения реакций, используемых для идентификации указанных в задаче органических соединений.

Ответ:

Органические соединения

Реактивы

Фенол Ацетат натрия Глюкоза Ацетамид
FeCl 3 (раствор) Раствор окрашивается в фиол. цвет
NaOH(раствор)+нагревание Характерный запах аммиака
Свежеосаждённый Cu(OH) 2 Растворение осадка и образование ярко-синего раствора (без нагревания). При нагревании образуется красный осадок
C 2 H 5 OH, несколько капель конц. H 2 SO 4 Характерный запах сложных эфиров

Возможно использование других реактивов.

Для образования фенолов можно использовать реакцию с бромной водой или раствором хлорида железа(III).

C 6 H 5 OH + 3Br 2 (водн. р-р) → C 6 H 2 Br 3 OH↓ белый осадок + 3HBr

Раствор фенола + раствор FeCl 3 → фиолетовое окрашивание раствора.

Ацетамид можно определить по выделению аммиака при нагревании пробы вещества с раствором щёлочи.

CH 3 CONH 2 + KOH → CH 3 COOK + NH 3

Глюкозу легко обнаружить по появлению ярко-синего окрашивания при взаимодействии со щелочным раствором гидроксида меди(II) без нагревания.

Глюкоза в этом случае проявляет свойства многоатомного спирта. Цвет раствора обусловлен образованием комплексного соединения меди. При нагревании синего раствора образуется красный осадок оксида меди(I).

HOCH 2 (CHOH) 4 CHО + 2Cu(OH) 2 HOCH 2 (CHOH) 4 COOH + Cu 2 O + 2H 2 O

Глюкозу (как восстанавливающий углевод) можно обнаружить также с помощью реакции «серебряного зеркала).

HOCH 2 (CHOH) 4 – COH + 2OH → HOCH 2 (CHOH) 4 – CONH 4 + 2Ag + 3NH 3 + H 2 O

Ацетат натрия можно идентифицировать методом исключения, т. к. он не реагирует ни с одним из перечисленных реактивов. Однако доказать, что мы имеем дело с солью карбоновой кислоты, можно с помощью пробы на образование сложных эфиров: к раствору соли добавляют небольшое количество спирта (например, этанола) и несколько капель концентрированной серной кислоты и слегка нагревают. Если смесь вылить в воду, то на поверхности появятся капли сложного эфира с характерным запахом.

CH 3 COONa + C 2 H 5 OH + H 2 SO 4 → CH 3 COOC 2 H 5 этилацетат + NaHSO 4 + H 2 O

Система оценивания:

В итоговую оценку из 6-и задач засчитываются 5 решений, за которые участник
набрал наибольшие баллы, то есть одна из задач с наименьшим баллом не
учитывается .