Какая матрица называется платежной матрицей матрицей выигрышей. Понятие об игровых моделях

Содержание 1 Общие сведения 2 1.1 Игры. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Ходы. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Стратегии. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 Матричная игра. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Следовая точка. Чистые стратегии 7 2.1 Примеры. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Пример 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Пример 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3 Смешанные стратегии 9 3.1 Игра 2×2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.1.1 Примеры. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Пример 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Пример 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.1.2 Геометрическая интерпретация. . . . . . . . . . . . . . . . . . . . 12 3.2 Игры 2×n и m×2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Пример 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1 1. Общие сведения из теории игр 1.1. Игры Теория игр - это математическая теория конфликтных ситуаций, т.е. таких ситуаций, в которых сталкиваются интересы двух или более сторон, преследующих различные цели. Игра - это конфликтная ситуация, регламентированная определенными правилами, в которых должны быть указаны: возможные варианты действий участников количественный результат игры или платеж (выигрыш, проигрыш), к которому при- водит данная совокупность ходов объем информации каждой стороны о поведении другой. Парная игра - игра в которой участвуют только две стороны (два игрока). Парная игра c нулевой суммой - парная игра, в которой сумма платежей равна нулю, т.е. проигрыш одного игрока равен выигрышу второго. В зависимости от отношения каждого из игроков к значению функции выигрыша парные игры подразделяются: Парная игра c нулевой суммой (антагонистическая) - парная игра, в которой сум- ма платежей равна нулю, т.е. проигрыш одного игрока равен выигрышу второго. Неантагонистическая игра - парная игра,в которой игроки преследуют разные, но не прямо противоположные цели. 2 1.2. Ходы Ход - выбор одного из предусмотренных правилами игры действий осуществление этого выбора Ходы бывают двух типов: Личный ход - + сознательный выбор одного из предусмотренных правилами игры действий + осуществление этого выбора Случайный ход - Случайным ходом называется выбор из ряда возможностей, осуществляемый не решением игрока, а каким-либо механизмом случайного вы- бора. Ниже рассматриваются парные игры с нулевой суммой, содержащие только личные ходы. У каждой стороны отсутствует информация о поведении другой. 3 1.3. Стратегии Стратегия игрока - совокупность правил, определяющих выбор действий при каждом личном ходе этого игрока в зависимости от ситуации, сложившейся в процессе игры. В зависимости от числа возможных стратегий игры делятся на конечные и бесконечные. Бесконечная игра - игра, в которой хотя бы у одного одного из игроков имеется бесконечное число стратегий. Конечная игра - игра, в которой у каждого игрока имеется только конечное число- стратегий. Число последовательных ходов у любого из игроков определяет под- разделение игр на одноходовые и многоходовые, или позиционные. + В одноходовой игре каждый игрок делает только один выбор из возможных вариантов и после этого устанавливает исход игры. + Многоходовая, или позиционная, игра развивается во времени, представляя собой ряд последовательных этапов, каждый из которых наступает после хода одного из игроков и соответствующего изменения обстановки. В одноходовой игре каждый игрок делает только один выбор из возможных вариантов и после этого устанавливает исход игры. Оптимальная стратегия игрока - стратегия, которая при многократном повторении иг- ры обеспечивает данному игроку максимально возможный средний выигрыш (или, что то же, минимально возможный средний проигрыш). В теории игр все рекомендации вырабатываются исходя из предположения о разумном поведении игроков. Просчеты и ошибки игроков, неизбежные в каждой конфликтной ситуации, а также элементы азарта и риска в теории игр не учитываются. 4 1.4. Матричная игра Матричная игра - одноходовая конечная игра с нулевой суммой.Матричная игра явля- ется теоретико-игровой моделью конфликтной ситуации, в которой противники для до- стижения диаметрально противоположных целей делают по одному выбору (ходу) из ко- нечного числа возможных способов действий.В соответствии с выбранными способами действий (стратегиями) определяется достигаемый результат. Рассмотрим на примере. Пусть имеются два игрока A и B, один из которых может выбрать i-ю стратегию из m своих возможных стратегий A1 , A2 , ...Am , а второй выбирает j-ю стратегию из своих воз- можных стратегий B1 , B2 , ...Bm . В результате первый игрок выигрывает величину aij , а второй проигрывает эту величину. Из чисел aij , составим матрицу   a11 a11 · · · a1n  a21 a22 · · · a2n    A = (aij) =  .. .. .. ..   . . . .  am1 am2 · · · amn Матрица A = (aij), i = 1, m, j = 1, n называется платежной матрицей или матрицей игры m × n. В этой матрице строки всегда для стратегий выигрывающего (максимизирующего) иг- рока A, то есть игрока, который стремится к максимизации своего выигрыша. Столбцы отводятся для стратегий проигрывающего игрока B, то есть игрока, который стремится к минимизации критерия эффективности. Нормализация игры - процесс сведения позиционной игры к матричной игре Игрой в нормальной форме - позиционная игра, сведенная к матрич- ной игре Напомним, что, позиционная многоходовая игра является теоретико- игровой моделью конфликтной ситуации, в которой противники для дости- жения своих целей последовательно делают по одному выбору (ходу) из ко- нечного числа возможных способов действий на каждом этапе развития этой ситуации. Решение игры - нахождение оптимальных стратегий обоих игроков и определение це- ны игры Цена игры - ожидаемый выигрыш (проигрыш) игроков. Решение игры может быть найдено либо в чистых стратегиях - когда игрок должен следовать одной единственной стратегии, либо в смешанных, когда игрок должен c определенными вероятностями применять две чистые стратегии или более. Последние в этом случае называются активными. 5 Смешанная стратегия одного игрока - вектор, каждая из компонент которого показы- вает частоту использования игроком соответствующей чистой стратегии. Максимин или нижняя цена игры - число α = max min aij i j Максиминная стратегия (строка) - стратегия, которую выбрал игрок, чтобы максими- зировать свой минимальный выигрыш. Очевидно, что при выборе наиболее осторожной максиминной стратегии игрок A обеспе- чивает себе (независимо от поведения противника) гарантированный выигрыш не менее α. Максимин или верхняя цена игры - число β = min max aij j i Минимаксная стратегия (столбец) - стратегия, которую выбрал игрок, чтобы миними- зировать свой максимальный проигрыш. Очевидно, что при выборе наиболее осторожной минимаксной стратегии игрок B не дает возможности ни при каких обстоятельствах игроку A выиграть больше, чем β. Нижняя цена игры всегда не превосходит верхней цены игры α = max min aij 6 min max aij = β i j j i Теоремма 1 (основная теорема теории матричных игр). Каждая конечная игра имеет по крайней мере одно решение, возможно, в области смешанных стратегий. 6 2. Игры с седловой точкой. Решение в чистых стратегиях Игра с седловой точкой - игра, для которой α = max min aij = min max aij = β i j j i Для игр с седловой точкой нахождение решения состоит в выборе максиминной и мини- макcной стратегий, которые являются оптимальными., Чистая цена игры - общее значение нижней и верхней цены игры α=β=ν 2.1. Примеры Пример 1 Найти решение в чистых стратегиях игры, заданной матрицей   8 4 7 A= 6 5 9  7 7 8 Решение: определим верхнюю и нижнюю цену игры. Для этого найдем минимальное из чисел aij в i-й строке αi = min aij j и максимальное из чисел aij в j-м столбце βj = max aij i Числа αi (минимумы строк) выпишем рядом с платежной матрицей справа в виде доба- вочного столбца. Числа βi (максимумы столбцов) выпишем под матрицей в виде доба- вочной строки: αi 8 4 7 4 6 5 9 5 7 7 8 7 βj 8 7 9 7 Находим максимальное из чисел αi α = max αi = 7 i и минимальное из чисел βj β = min βj = 7 j α = β - игра имеет седловую точку. Оптимальной стратегией для игрока является стра- тегия A3 , а для игрока B - стратегия B2 , чистая цена игры ν = 7 Пример 2 Задана платежная матрица:   2 2 1 1 2  0 1 1 1 1  A=  1 1 1 1 2   1 2 1 1 2 Найти решение игры в чистых стратегиях. Решение: 2 2 1 1 2 1 0 1 1 1 1 0 1 1 1 1 2 1 1 2 1 1 2 1 βj 2 2 1 1 2 α = β = 1. Игра имеет шесть седловых точек. Оптимальными стратегиями будут: A1 и B3 или B4 A3 и B3 или B4 A4 и B3 или B4 8 3. Решение игры в смешанных стратегиях При α ̸= β. случае, когда при выборе своих стратегий оба игрока не имеют информации о выборе другого, игра имеет решение в смешанных стратегиях. SA = (p1 , p2 , ..., pm) - смешанная стратегия игрока A , в которой стратегии A1 , A2 , ..., Am применяются о вероятностями ∑ m p1 , p2 , ..., pm , pi = 1, pi > 0, i = 1, m i=1 SB = (q1 , q2 , ..., qn) - смешанная стратегия игрока B , в которой стратегии B1 , B2 , ..., Bm применяются о вероятностями ∑ n q1 , q2 , ..., qm , qi = 1, qi > 0, i = 1, n i=1 Если: SA∗ - оптимальная стратегия игрока A , SB∗ - - оптимальная стратегия игрока B , то цена игры - ∑ n ∑ m ν= aij · p∗i · qi∗ j=1 i=1 Следующая теорема дает ответ на вопрос, как найти решение для игр 2 × 2, 2 × n, m × 2 Теоремма 2 (как найти решение для игр 2 × 2, 2 × n, m × 2). Если один из игроков применяет оптимальную смешанную стратегию, то его выигрыш равен цене игры ν вне зависимости от того, с какими вероятностями будет применять второй игрок стра- тегии, вошедшие в оптимальную (в том числе и чистые стратегии). 9 3.1. Игра 2 × 2 Рассмотрим игру 2 × 2 о матрицей: () a11 a21 a21 a22 Пусть игра не имеет решения в чистых стратегиях. Найдем оптимальные стратегии SA∗ и SB∗ . Сначала определим стратегию SA∗ = (p∗1 , p∗2). Согласно теореме, если сторона A бу- дет придерживаться стратегии ν, то независимо от образа действий стороны B выигрыш будет оставаться равным цене игры ν. Следовательно, если сторона A придерживается оптимальной стратегии SA∗ = (p∗1 , p∗2), то сторона B может, не меняя выигрыша, приме- нять любую из своих стратегий. Тогда при применении игроком B чистой стратегии B1 или B2 игроке получит средний выигрыш равный цене игры: a11 p∗1 + a21 p∗2 = ν ← при стратегии B1 a12 p∗1 + a22 p∗2 = ν ← при стратегии B2 Принимая во внимание, что p∗1 + p∗2 = 1: p∗1 = a2 2−a2 1 a11 +a22 −a12 −a21 p∗2 = a1 1−a1 2 a11 +a22 −a12 −a21 Цена игры: a22 a11 − a12 a21 ν= a11 + a22 − a12 − a21 Аналогично находится оптимальная стратегия игрока B: SB∗ = (q1∗ , q2∗). Принимая во внимание, что q1∗ + q2∗ = 1: q1∗ = a2 2−a1 2 a11 +a22 −a12 −a21 q2∗ = a1 1−a2 1 a11 +a22 −a12 −a21 3.1.1. Примеры Пример 3 Найти решение игры c матрицей () −1 1 A= 1 −1 10 Решение: игра не имеет седловой точки, так как α= -1, β = 1, α ̸= β. Ищем решение в смешанных стратегиях. По формулам для p∗ и q ∗ получаем p∗1 = p∗2 = 0.5 и q1∗ = q2∗ = 0.5, ν = 0 Таким образом, SA∗ = (0.5, 0.5) SB∗ = (0.5, 0.5) Пример 4 Найти решение игры c матрицей () 2 5 A= 6 4 Решение: игра не имеет седловой точки, так как α= 4, β = 5, α ̸= β. Ищем решение в смешанных стратегиях. По формулам для p∗ и q ∗ получаем p∗1 = 0.4, p∗2 = 0.6 и q1∗ = 0.2 q2∗ = 0.8, ν = 4.4 Таким образом, SA∗ = (0.4, 0.6) SB∗ = (0.2, 0.8) 11 3.1.2. Геометрическая интерпретация Игре 2 × 2 можно дать простую геометрическую интерпретацию. Возьмем единичный участок оси абсцисс, каждой точке которого поставим в соответствие некоторую сме- шанную стратегию S = (p1 , p2) = (p1 , 1 − p1) причем вероятность p1 стратегии A1 будет равна расстоянию от точки SA до правого конца участка, а вероятность p2 , стратегии A2 - расстоянию до левого конца. .y .I .I I .B1′ .N .B1 .a21 .a11 .I I .I .∗ .x .P2 .SA∗ .P1∗ В частности, левый конец участка (точка с абсциссой = 0) отвечает стратегии A1 , правый конец участка (x = 1) - стратегии A2 На концах участка восстанавливаются два перпендикуляра к оси абсцисс: ось I − I - откладывается выигрыш при стратегии A1 ось II − II - откладывается выигрыш при стратегии A2 Пусть игрок B применяет стратегию B1 ; она дает на осях I − I и II − II соответственно точки с ординатами a11 и a21 . Проводим через эти точки прямую B1 − B1′ . При любой смешанной стратегии SA = (p1 , p2) выигрыш игрока определяется точкой N на прямой B1 −B1′ , соответствующей точке SA на оси абсцисс, делящей отрезок в отношении p2: p1 . Очевидно, точно таким же способом может быть построена и прямая B2 − B2′ , определя- ющая выигрыш при стратегии B2 . 12 .y .I .I I .B2 .N .a21 .B2′ a . 22 .I I .I .∗ .x .P2 .SA∗ .P1∗ Необходимо найти оптимальную стратегию SA∗ , т.е. такую, при которой минимальный выигрыш игрока A (при наихудшем для него поведении игрока B) обращался бы в мак- симум. Для этого строиться нижняя граница выигрыша игрока A при стратегиях B1 , B2 , т.е. ломаная B1 N B2′ ;. На этой границе будет лежать минимальный выигрыш игрока A при любой его смешанной стратегии, точка N , в которой этот выигрыш достигает максимума и определяет решение и цену игры. .y .I .I I .B2 .B1′ .N .B1 .B2′ .I I .I .∗ .x .P2 . A∗ S . 1∗ P Ордината точки N есть не что иное, как цена игры ν, ее абсцисса равна ∗2 , а расстояние до правого конца отрезка равно ∗1 , т.е. расстояние от точки SA∗ до концов отрезка равны вероятностям ∗2 и ∗1 стратегий A2 и A1 оптимальной смешанной стратегии игрока A. в данном случае решение игры определялось точкой пересечения стратегий B1 и B2 . Ниже показан случай, когда оптимальной стратегией игрока является чистая стратегия A2 . Здесь стратегия A2 (при любой стратегии противника) выгоднее стратегии A1 , 13 .y .y .I .I I .I I. I .B2′ . 1′ B .B1′ B . 2 .B2′ B . 2 .B1 .ν = a21 .B1 .ν = a21 I. I I. I .I . .x .I . .x . 2∗ P . A∗ S = A2 . 2∗ P . A∗ S = A2 Правее показан случай, когда заведомо невыгодная стратегия имеется у игрока B. Гео- метрическая интерпретация дает возможность наглядно изобразить также нижнюю цену игры α и верхнюю β .y .I .I I .B2 .B1′ .N .B1 .B2′ .β = a21 .α = a22 .I I .I .∗ .x .P2 . A∗ S . 1∗ P На том же графике можно дать и геометрическую интерпретацию оптимальных страте- гий игрока B . Нетрудно убедиться, что доля q1∗ стратегии B1 оптимальной смешанной стратегии SB∗ = (q1∗ , q2∗) равна отношению длины, отрезка KB2 к сумме длин отрезков KB1 и KB2 на оси I − I: .y .I .I I .B2 .B1′ .N .K .L .B1 .B2′ .I I .I .∗ .x .P2 . A∗ S . 1∗ P 14 KB2 q1∗ = KB2 + KB1 или LB2′ q1∗ = LB2′ + LB1′ Оптимальную стратегию SB∗ = (q1∗ , q2∗) можно найти и другим способом, если поменять местами игроков B и B, а вместо максимума нижней границы выигрыша рассмотреть минимум верхней границы. .y .I .I I .A2 .A′1 .N .A1 .A′2 .I I .I . .x .q2∗ . B∗ S .q1∗ 15 3.2. Игры 2 × n и m × 2 Решение игр 2 × n и m × 2 основывается на следующей теореме. Теоремма 3. У любой конечной игры m × n существует решение, в котором число ак- тивных стратегий каждой стороны не превосходит наименьшего из чис->ел m и n. Согласно этой теореме у игры 2 × n всегда имеется решение, в котором каждый игрок имеет не более двух активных стратегий. Стоит только найти эти стратегии, и игра 2 × n превращается в игру 2 × 2, которая решается элементарно. Нахождение активных стра- тегий может выполняться графическим способом: 1) строится графическая интерпретация; 2) определяется нижняя граница выигрыша; 3) выделяются на нижней границе выигрыша две стратегии второго игрока, которым соответствуют две прямые, пересекающиеся в точке с максимальной ординатой (ес- ли в ней пересекаются более двух прямых, берется любая пара) - эти стратегий представляют собой активные стратегии игрока B. Таким образом, игра 2 × n сведена к игре 2 × 2. Также может быть решена игра m × 2, с той разницей, что строится не нижняя, а верхняя граница выигрыша и на ней ищется не максимум, а минимум. Пример 5 Найти решение игры () 7 9 8 A= 10 6 9 Решение: используя геометрический метод, выделяем активные стратегии. Прямые B1 − B1′ , B2 − B2′ и B3 − B3′ соответствуют стратегиям B1 , B2 , B3 . Ломаная B1 N B2 - нижняя граница выигрыша игрока. Игра имеет решение S∗A = (23 , 31); S∗B = (0.5; 0.5; 0); v = 8. 16 .y .I .I I . 1′ B B . 2 .B3′ .N .B3 .B1 .B2′ .I I .I . .x . 2∗ P . A∗ S . 1∗ P 17 Предметный указатель игра, 2 ход, 3 2 × 2, 10 личный, 3 2 × 2, 9 случайный, 3 геометрия, 12 чистая цена игры, 7 примеры, 10 2 × n, 9, 16 m × 2, 9, 16 бесконечная, 4 в нормальной форме, 5 конечная, 4 многоходовая, 4 одноходовая, 4 матричная, 5 парная, 2 c нулевой суммой, 2 антагонистическая, 2 неантагонистическая, 2 решение, 5 в смешанных стратегиях, 5, 9 в чистых стратегиях, 5 с седловой точкой, 7 цена, 5 верхняя, 6 нижняя, 6 чистая, 7 максимин, 6 матрица игры, 5 платежная, 5 минимакс, 6 нормализация игры, 5 стратегия, 4 максиминная, 6 минимаксная, 6 оптимальная, 4 смешанная, 5 теория игр, 2 18

Теория игр как раздел исследования операций – это теория математических моделей принятия оптимальных решений в условиях неопределенности или конфликта нескольких сторон, имеющих различные интересы. Теория игр исследует оптимальные стратегии в ситуациях игрового характера. К ним относятся ситуации, связанные с выбором наивыгоднейших производственных решений системы научных и хозяйственных экспериментов, организацией статистического контроля, хозяйственных взаимоотношений между предприятиями промышленности и других отраслей. Формализуя конфликтные ситуации математически, их можно представить как игру двух, трех и т.д. игроков, каждый из которых преследует цель максимизации своей выгоды, своего выигрыша за счет другого.

Раздел "Теория игр" представлен тремя онлайн-калькуляторами :

  1. Оптимальные стратегии игроков . В таких задачах задана платежная матрица. Требуется найти чистые или смешанные стратегии игроков и, цену игры . Для решения необходимо указать размерность матрицы и метод решения. В сервисе реализованы следующие методы решения игры двух игроков:
    1. Минимакс . Если необходимо найти чистую стратегию игроков или ответить на вопрос о седловой точке игры, выберите этот метод решения.
    2. Симплекс-метод . Используется для решения игры в смешанных стратегиях методами линейного программирования.
    3. Графический метод . Используется для решения игры в смешанных стратегиях. Если есть седловая точка, решение прекращается. Пример: По заданной платежной матрице найти оптимальные смешанные стратегии игроков и цену игры, используя графический метод решения игры.
    4. Итерационный метод Брауна-Робинсона . Итеративный метод применяется тогда, когда не применим графический метод и когда практически не приминимы алгебраический и матричный методы. Этот метод дает приближенное значение цены игры, причем истинное значение можно получить с любой нужной степенью точности. Этот метод недостаточен для нахождения оптимальных стратегий, но он позволяет отслеживать динамику пошаговой игры и определить цену игры для каждого из игроков на каждом шаге.
    Например, задание может звучать как "указать оптимальные стратегии игроков для игры, заданной платежной матрицей" .
    Во всех методах применяется проверка на доминирующие строки и столбцы.
  2. Биматричная игра . Обычно в такой игре задают две матрицы одинакового размера выигрышей первого и второго игроков. Строки этих матриц соответствуют стратегиям первого игрока, а столбцы матриц – стратегиям второго игрока. При этом в первой матрице представлены выигрыши первого игрока, а во второй матрице – выигрыши второго.
  3. Игры с природой . Используется, когда необходимо выбрать управленческое решение по критериям Максимакса, Байеса, Лапласа, Вальда , Сэвиджа , Гурвица .
    Для критерия Байеса необходимо также будет ввести вероятности наступления событий. Если они не заданы, оставьте значения по умолчанию (будут равнозначные события).
    Для критерия Гурвица укажите уровень оптимизма λ . Если в условиях данный параметр не задан можно использовать значения 0, 0.5 и 1 .

Во многих задачах требуется находить решение средствами ЭВМ. Одним из инструментов служат вышеприведенные сервисы и функции

Теория игр - совокупность математических методов решения конфликтных ситуаций (столкновений интересов). В теории игр игрой называется математическая модель конфликтной ситуации. Предмет особого интереса теории игр - исследование стратегий принятия решений участников игры в условиях неопределённости. Неопределённость связана с тем, что две или более стороны преследуют противоположные цели, а результаты любого действия каждой из сторон зависят от ходов партнёра. При этом каждая из сторон стремится принимать оптимальные решения, которые реализуют поставленные цели в наибольшей степени.

Наиболее последовательно теория игр применяется в экономике, где конфликтные ситуации возникают, например, в отношениях между поставщиком и потребителем, покупателем и продавцом, банком и клиентом. Применение теории игр можно найти и в политике, социологии, биологии, военном искусстве.

Из истории теории игр

История теории игр как самостоятельной дисциплины начинается в 1944 году, когда Джон фон Нейман и Оскар Моргенштерн опубликовали книгу "Теория игр и экономическое поведение" ("Theory of Games and Economic Behavior"). Хотя примеры теории игр встречались и раньше: трактат Вавилонского Талмуда о разделе имущества умершего мужа между его жёнами, карточные игры в 18-м веке, развитие теории шахматной игры в начале 20-го века, доказательство теоремы о минимаксе того же Джона фон Неймана в 1928 году, без которой не было бы никакой теории игр.

В 50-х годах 20-го века Мелвин Дрешер и Мерил Флод из Rand Corporation первыми экспериментально применили дилемму заключённого, Джон Нэш в работах о состоянии равновесия в играх двух лиц развил понятие равновесия Нэша.

Рейнхард Сэлтен в 1965 году опубликовал книгу "Обработка олигополии в теории игр по требованию" ("Spieltheoretische Behandlung eines Oligomodells mit Nachfrageträgheit"), с которой применение теории игр в экономике получило новую движущую силу. Шагом вперёд в эволюции теории игр связан с работой Джона Мейнарда Смита "Эволюционно стабильная стратегия" ("Evolutionary Stable Strategy", 1974). Дилемма заключённого была популяризована в книге Роберта Аксельрода "Эволюция кооперации" ("The Evolution of Cooperation"), опубликованной в 1984 году. В 1994 году именно за вклад в теорию игр Нобелевской премии были удостоены Джон Нэш, Джон Харсаньи и Рейнхард Сэлтен.

Теория игр в жизни и бизнесе

Остановимся подробнее на сути кофликтной ситуации (столкновении интересов) в том смысле, как он понимается в теории игр для дальнейшего моделирования различных ситуаций в жизни и бизнесе. Пусть индивидуум находится в таком положении, которое приводит к одному из нескольких возможных исходов, причём у индивидуума имеются по отношению к этим исходам некоторые личные предпочтения. Но хотя он может до некоторой степени управлять переменными факторами, определяющими исход, он не имеет полной власти над ними. Иногда управление находится в руках нескольких индивидуумов, которые, подобно ему, имеют какие-то предпочтения по отношению к возможным исходам, но в общем случае интересы этих индивидуумов не согласуются. В других случаях конечный исход может зависеть как от случайностей (которые в юридических науках иногда именуются стихийными бедствиями), так и от других индивидуумов. Теория игр систематизирует наблюдения за такими ситуациями и формулировки общих принципов для руководства разумными действиями в таких ситуациях.

В некоторых отношениях название "теория игр" неудачно, так как наводит на мысль, что теория игр рассматривает лишь не имеющие социального значения столкновения, происходящие в салонных играх, но всё же эта теория имеет значительно более широкое значение.

О применении теории игр может дать представление следующая экономическая ситуация. Пусть имеется несколько предпринимателей, каждый из которых стремится получить максимум прибыли, имея при этом лишь ограниченную власть над переменными, определяющими эту прибыль. Предприниматель не имеет власти над переменными, которыми распоряжается другой предприниматель, но которые могут сильно влиять на доход первого. Трактовка этой ситуации как игры может вызвать следующее возражение. В игровой модели предполагается, что каждый предприниматель делает один выбор из области возможных выборов и этими единичными выборами определяются прибыли. Очевидно, что этого почти не может быть в действительности, так как при этом в промышленности не были бы нужны сложные управленческие аппараты. Просто есть ряд решений и модификаций этих решений, которые зависят от выборов, совершённых другими участниками экономической системы (игроками). Но в принципе можно вообразить, что какой-либо администратор предвидит все возможные случайности и подробно описывает действие, которое нужно предпринимать в каждом случае, вместо того чтобы решать каждую задачу по мере её возникновения.

Военный кофликт, по определению, есть столкновение интересов, в котором ни одна из сторон не распоряжается полностью переменными, определяющими исход, который решается рядом битв. Можно просто считать исход выигрышем или проигрышем и приписать им численные значения 1 и 0.

Одна из самых простых конфликтных ситуаций, которая может быть записана и решена в теории игр - дуэль, представляющая собой конфликт двух игроков 1 и 2, имеющих соответственно p и q выстрелов. Для каждого игрока существует функция, указывающая вероятность того, что выстрел игрока i в момент времени t даст попадание, которое окажется смертельным.

В итоге теория игр приходит к такой формулировке некоторого класса столкновений интересов: имеются n игроков, и каждому нужно выбрать одну возможность из стого определённого набора, причём при совершении выбора у игрока нет никаких сведений о выборах других игроков. Область возможных выборов игрока может содержать такие элементы, как "ход тузом пик", "производство танков вместо автомобилей", или в общем смысле, стратегию, определяющую все действия, которые нужно совершить во всех возможных обстоятельствах. Перед каждым игроком стоит задача: какой выбор он должен сделать, чтобы его частное влияние на исход принесло ему как можно больший выигрыш?

Математическая модель в теории игр и формализация задач

Как мы уже отмечали, игра является математической моделью конфликтной ситуации и требует наличия следующих компонент:

  1. заинтересованных сторон;
  2. возможных действий с каждой стороны;
  3. интересов сторон.

Заинтересованные в игре стороны называются игроками , каждый из них может предпринять не менее двух действий (если в распоряжении игрока только одно действие, то он фактически не участвует в игре, так как заранее известно, что он предпримет). Исход игры называется выигрышем .

Реальная конфликтная ситуация не всегда, а игра (в понятии теории игр) - всегда - протекает по определённым правилам , которые точно определяют:

  1. варианты действий игроков;
  2. объём информации каждого игрока о поведении партнёра;
  3. выигрыш, к которому приводит каждая совокупность действий.

Примерами формализованных игр могут служить футбол, карточная игра, шахматы.

Но в экономике модель поведения игроков возникает, например, когда несколько фирм стремятся занять более выгодное место на рынке, несколько лиц пытаются поделить между собой какое-либо благо (ресурсы, финансы) так, чтобы каждому досталось по возможности больше. Игроками в конфликтных ситуациях в экономике, которые можно моделировать в виде игры, являются фирмы, банки, отдельные люди и другие экономические агенты. В свою очередь в условиях войны модель игры используется, например, в выборе более лучшего оружия (из имеющегося или потенциально возможного) для разгрома противника или защиты от нападения.

Для игры характерна неопределённость результата . Причины неопределённости можно распределить по следующим группам:

  1. комбинаторные (как в шахматах);
  2. влияние случайных факторов (как в игре "орёл или решка", кости, карточные игры);
  3. стратегические (игрок не знает, какое действие предпримет противник).

Стратегией игрока называется совокупность правил, определяющих его действия при каждом ходе в зависимости от сложившейся ситуации.

Целью теории игр является определение оптимальной стратегии для каждого игрока. Определить такую стратегию - значит решить игру. Оптимальность стратегии достигается, когда один из игроков должен получить максимальный выигрыш, при том, что второй придерживается своей стратегии. А второй игрок должен иметь минимальный проигрыш, если первый придерживается своей стратегии.

Классификация игр

  1. Классификация по числу игроков (игра двух и более лиц). Игры двух лиц занимают центральное место во всей теории игр. Основным понятием теории игр для игры двух лиц является обобщение весьма существенной идеи равновесия, которая естественно появляется в играх двух лиц. Что же касается игр n лиц, то одна часть теории игр посвящена играм, в которых сотрудничество между игроками запрещено. В другой части теории игр n лиц предполагается, что игроки могут сотрудничать для взаимной пользы (см. далее в этом параграфе о некооперативных и кооперативных играх).
  2. Классификация по числу игроков и их стратегиям (число стратегий не менее двух, может быть бесконечностью).
  3. Классификация по количеству информации относительно прошлых ходов: игры с полной информацией и неполной информацией. Пусть есть игрок 1 - покупатель и игрок 2 - продавец. Если у игрока 1 нет полной информации о действиях игрока 2, то игрок 1 может и не различить две альтернативы, между которыми ему предстоит сделать выбор. Например, выбирая между двумя видами некоторого товара и не зная о том, что по некоторым признакам товар A хуже товара B , игрок 1 может не видеть различия между альтернативами.
  4. Классификация по принципам деления выигрыша : кооперативные, коалиционные с одной стороны и некооперативные, бескоалиционные с другой стороны. В некооперативной игре , или иначе - бескоалиционной игре , игроки выбирают стратегии одновременно, не зная, какую стратегию выберет второй игрок. Коммуникация между игроками невозможна. В кооперативной игре , или иначе - коалиционной игре , игроки могут объединяться в коалиции и предпринимать коллективные действия, чтобы увеличить свои выигрыши.
  5. Конечная игра двух лиц с нулевой суммой или антогонистическая игра – это стратегическая игра с полной информацией, в которой участвуют стороны с противоположными интересами. Анатагонистическими играми являются матричные игры .

Классический пример из теории игр - дилемма заключённого

Двух подозреваемых берут под стражу и изолируют друг от друга. Окружной прокурор убеждён, что они совершили тяжкое преступление, но не имеет достаточных доказательств, чтобы предъявить им обвинение на суде. Он говорит каждому из заключённых, что у него имеется две альтернативы: признаться в преступлении, которое по убеждению полиции он совершил, или не признаваться. Если оба не признаются, то окружной прокурор предъявит им обвинение в каком-либо незначительном преступлении, например, мелкая кража или незаконное владение оружием, и они оба получат небольшое наказание. Если они оба признаются, то будут подлежать судебной ответственности, но он не потребует самого строгого приговора. Если же один признается, а другой нет, то признавшемуся приговор будет смягчён за выдачу сообщника, в то время как упорствующий получит "на полную катушку".

Если эту стратегическую задачу сформулировать в сроках заключения, то она сводится к следующему:

Таким образом, если оба заключённых не признаются, они получат по 1 году каждый. Если оба признаются, то каждый получит по 8 лет. А если один признается, другой не признается, то тот, который признался отделается тремя месяцами заключения, а тот, который не признается, получит 10 лет. Приведённая выше матрица правильно отражает дилемму заключённого: перед каждым стоит вопрос - признаться или не признаться. Игра, которую окружной прокурор предлагает заключённым, представляет собой некооперативную игру или иначе - бескоалиционную игру . Если бы оба заключённых имели возможность сотрудничать (то есть игра была бы кооперативной или иначе коалиционной игрой ), то оба не признались бы и получили по году тюрьмы каждый.

Примеры использования математических средств теории игр

Переходим теперь к рассмотрению решений примеров распространённых классов игр, для которых в теории игр существуют методы исследования и решения.

Пример формализации некооперативной (бескоалиционной) игры двух лиц

В предыдущем параграфе мы уже рассмотрели пример некооперативной (бескоалиционной) игры (дилемма заключённого). Давайте закрепим наши навыки. Для этого подойдёт также классический сюжет, навеянный "Приключениями Шерлока Холмса" Артура Конан Дойля. Можно, конечно, возразить: пример не из жизни, а из литературы, но ведь Конан Дойль не зарекомендовал себя как писатель-фантаст! Классический ещё и потому, что задание выполнено Оскаром Моргенштерном, как мы уже установили - одним из основателей теории игр.

Пример 1. Будет приведено сокращённое изложение фрагмента одного из "Приключений Шерлока Холмса". Согласно известным понятиям теории игр составить модель конфликтной ситуации и формально записать игру.

Шерлок Холмс намерен отправиться из Лондона в Дувр с дальнейшей целю попасть на континент (европейский), чтобы спастись от профессора Мориарти, который преследует его. Сев в поезд, он увидел на вокзальной платформе профессора Мориарти. Шерлок Холмс допускает, что Мориарти может выбрать особый поезд и обогнать его. У Шерлока Холмса две альтернативы: продолжать поездку до Дувра или сойти на станции Кентерберри, являющейся единственной промежуточной станцией на его маршруте. Мы принимаем, что его противник достаточно разумен, чтобы определить возможности Холмса, поэтому перед ним те же две альтернативы. Оба противника должны выбрать станцию, чтобы сойти на ней с поезда, не зная, какое решение примет каждый из них. Если в результате принятия решения оба окажутся на одной и той же станции, то можно однозначно считать, что Шерлок Холмс будет убит профессором Мориарти. Если же Шерлок Холмс благополучно доберётся до Дувра, то он будет спасён.

Решение. Героев Конан Дойля можем рассматривать как участников игры, то есть игроков. В распоряжении каждого игрока i (i =1,2) две чистые стратегии:

  • сойти в Дувре (стратегия s i1 (i =1,2) );
  • сойти на промежуточной станции (стратегия s i2 (i =1,2) )

В зависимости от того, какую из двух стратегий выберет каждый из двух игроков, будет создана особая комбинация стратегий как пара s = (s 1 , s 2 ) .

Каждой комбинации можно поставить в соответствие событие - исход попытки убийства Шерлока Холмса профессором Мориарти. Составляем матрицу данной игры с возможными событиями.

Под каждым из событий указан индекс, означающий приобретение профессора Мориарти, и рассчитываемый в зависимости от спасения Холмса. Оба героя выбирают стратегию одновременно, не зная, что выберет противник. Таким образом, игра является некооперативной, поскольку, во-первых, игроки находятся в разных поездах, а во-вторых, имеют противоположные интересы.

Пример формализации и решения кооперативной (коалиционной) игры n лиц

В этом пункте практическая часть, то есть ход решения примера задачи, будет предварена теоретической частью, в которой будем знакомиться с понятиями теории игр для решения кооперативных (бескоалиционных) игр. Для этой задачи теория игр предлагает:

  • характеристическую функцию (если говорить упрощённо, она отражает величину выгоды объединения игроков в коалицию);
  • понятие аддитивности (свойства величин, состоящее в том, что значение величины, соответствующее целому объекту, равно сумме значений величин, соответствующих его частям, в некотором классе разбиений объекта на части) и супераддитивности (значение величины, соответствующее целому объекту, больше суммы значений величин, соответствующих его частям) характеристической функции.

Супераддитивность характеристической функции говорит о том, что объединение в коалиции выгодна игрокам, так как в этом случае величина выигрыша коалиции увеличивается с увеличением числа игроков.

Для формализации игры нам нужно ввести формальные обозначения вышеназванных понятий.

Для игры n обозначим множество всех её игроков как N = {1,2,...,n} Любое непустое подмножество множества N обозначим как Т (включая само N и все подмножества, состоящие из одного элемента). На сайте есть занятие "Множества и операции над множествами ", которое при переходе по ссылке открывается в новом окне.

Характеристическая функция обозначается как v и область её определения состоит из возможных подмножеств множества N . v (T ) - значение характеристической функции для того или иного подмножества, например, доход, полученный коалицией, в том числе, возможно, состоящей из одного игрока. Это важно по той причине, что теория игр требует проверить наличие супераддитивности для значений характеристической функции всех непересекающихся коалиций.

Для двух непустых коалиций из подмножеств T 1 и T 2 аддитивность характеристической функции кооперативной (коалиционной) игры записывается так:

А супераддитивность так:

Пример 2. Трое студентов музыкальной школы подрабатывают в разных клубах, свою выручку они получают от посетителей клубов. Установить, выгодно ли им объединять свои силы (если да, то с какими условиями), используя понятия теории игр для решения кооперативных игр n лиц, при следующих исходных данных.

В среднем их выручка за один вечер составляла:

  • у скрипача 600 единиц;
  • у гитариста 700 единиц;
  • у певицы 900 единиц.

Пытаясь увеличить выручку, студенты в течение нескольких месяцев создавали различные группы. Результаты показали, что, объединившись, они могут увеличить свою выручку за вечер следующим образом:

  • скрипач + гитарист зарабатывали 1500 единиц;
  • скрипач + певица зарабатывали 1800 единиц;
  • гитарист + певица зарабатывали 1900 единиц;
  • скрипач + гитарист + певица зарабатывали 3000 единиц.

Решение. В этом примере число участников игры n = 3 , следовательно, область определения характеристической функции игры состоит из 2³ = 8 возможных подмножеств множества всех игроков. Перечислим все возможные коалиции T :

  • коалиции из одного элемента, каждая из которых состоит из одного игрока - музыканта: T {1} , T {2} , T {3} ;
  • коалиции из двух элементов: T {1,2} , T {1,3} , T {2,3} ;
  • коалиция из трёх элементов: T {1,2,3} .

Каждому из игроков присвоим порядковый номер:

  • скрипач - 1-й игрок;
  • гитарист - 2-й игрок;
  • певица - 3-й игрок.

По данным задачи определим характеристическую функцию игры v :

v(T{1}) = 600 ; v(T{2}) = 700 ; v(T{3}) = 900 ; эти значения характеристической функции определены исходя из выигрышей соответственно первого, второго и третьего игроков, когда они не объединяются в коалиции;

v(T{1,2}) = 1500 ; v(T{1,3}) = 1800 ; v(T{2,3}) = 1900 ; эти значения характеристической функции определены по выручке каждой пары игроков, объединившихся в коалиции;

v(T{1,2,3}) = 3000 ; это значение характеристической функции определено по средней выручке в случае, когда игроки объединялись в тройки.

Таким образом, мы перечислили все возможные коалиции игроков, их получилось восемь, как и должно быть, так как область определения характеристической функции игры состоит именно из восьми возможных подмножеств множества всех игроков. Что и требует теория игр, так как нам нужно проверить наличие супераддитивности для значений характеристической функции всех непересекающихся коалиций.

Как выполняются условия супераддитивности в этом примере? Определим, как игроки образуют непересекающиеся коалиции T 1 и T 2 . Если часть игроков входят в коалицию T 1 , то все остальные игроки входят в коалицию T 2 и по определению эта коалиция образуется как разность всего множества игроков и множества T 1 . Тогда, если T 1 - коалиция из одного игрока, то в коалиции T 2 будут второй и третий игроки, если в коалиции T 1 будут первый и третий игроки, то коалиция T 2 будет состоять только из второго игрока, и так далее.