Строение клетки человека и функции ее органоидов. Строение клеток эукариот

Приглашаем Вас ознакомиться с материалами и .

: целлюлозная оболочка, мембрана, цитоплазма с органоидами, ядро, вакуоли с клеточным соком.

Наличие пластид - главная особенность растительной клетки.


Функции клеточной оболочки - определяет форму клетки, защищает от факторов внешней среды.

Плазматическая мембрана - тонкая пленка, состоит из взаимодействующих молекул липидов и белков, отграничивает внутреннее содержимое от внешней среды, обеспечивает транспорт в клетку воды, минеральных и органических веществ путем осмоса и активного переноса, а также удаляет продукты жизнедеятельности.

Цитоплазма - внутренняя полужидкая среда клетки, в которой расположено ядро и органоиды, обеспечивает связи между ними, участвует в основных процессах жизнедеятельности.

Эндоплазматическая сеть - сеть ветвящихся каналов в цитоплазме. Она участвует в синтезе белков, липидов и углеводов, в транспорте веществ. Рибосомы - тельца, расположенные на ЭПС или в цитоплазме, состоят из РНК и белка, участвуют в синтезе белка. ЭПС и рибосомы - единый аппарат синтеза и транспорта белков.

Митохондрии - органоиды, отграниченные от цитоплазмы двумя мембранами. В них окисляются органические вещества и синтезируются молекулы АТФ с участием ферментов. Увеличение поверхности внутренней мембраны, на которой расположены ферменты за счет крист. АТФ - богатое энергией органическое вещество.

Пластиды (хлоропласты, лейкопласты, хромопласты), их содержание в клетке - главная особенность растительного организма. Хлоропласты - пластиды, содержащие зеленый пигмент хлорофилл, который поглощает энергию света и использует ее на синтез органических веществ из углекислого газа и воды. Отграничение хлоропластов от цитоплазмы двумя мембранами, многочисленные выросты - граны на внутренней мембране, в которых расположены молекулы хлорофилла и ферменты.

Комплекс Гольджи - система полостей, отграниченных от цитоплазмы мембраной. Накапливание в них белков, жиров и углеводов. Осуществление на мембранах синтеза жиров и углеводов.

Лизосомы - тельца, отграниченные от цитоплазмы одной мембраной. Содержащиеся в них ферменты ускоряют реакцию расщепления сложных молекул до простых: белков до аминокислот, сложных углеводов до простых, липидов до глицерина и жирных кислот, а также разрушают отмершие части клетки, целые клетки.

Вакуоли - полости в цитоплазме, заполненные клеточным соком, место накопления запасных питательных веществ, вредных веществ; они регулируют содержание воды в клетке.

Ядро - главная часть клетки, покрытая снаружи двух мембранной, пронизанной порами ядерной оболочкой. Вещества поступают в ядро и удаляются из него через поры. Хромосомы - носители наследственной информации о признаках организма, основные структуры ядра, каждая из которых состоит из одной молекулы ДНК в соединении с белками. Ядро - место синтеза ДНК, и-РНК, р-РНК.



Наличие наружной мембраны, цитоплазмы с органоидами, ядра с хромосомами.

Наружная, или плазматическая, мембрана - отграничивает содержимое клетки от окружающей среды (других клеток, межклеточного вещества), состоит из молекул липидов и белка, обеспечивает связь между клетками, транспорт веществ в клетку (пиноцитоз, фагоцитоз) и из клетки.

Цитоплазма - внутренняя полужидкая среда клетки, которая обеспечивает связь между расположенными в ней ядром и органоидами. В цитоплазме протекают основные процессы жизнедеятельности.

Органоиды клетки:

1) эндоплазматическая сеть (ЭПС) - система ветвящихся канальцев, участвует в синтезе белков, липидов и углеводов, в транспорте веществ в клетке;

2) рибосомы - тельца, содержащие рРНК, расположены на ЭПС и в цитоплазме, участвуют в синтезе белка. ЭПС и рибосомы - единый аппарат синтеза и транспорта белка;

3) митохондрии - «силовые станции» клетки, отграничены от цитоплазмы двумя мембранами. Внутренняя образует кристы (складки), увеличивающие ее поверхность. Ферменты на кристах ускоряют реакции окисления органических веществ и синтеза молекул АТФ, богатых энергией;

4) комплекс Гольджи - группа полостей, отграниченных мембраной от цитоплазмы, заполненных белками, жирами и углеводами, которые либо используются в процессах жизнедеятельности, либо удаляются из клетки. На мембранах комплекса осуществляется синтез жиров и углеводов;

5) лизосомы - тельца, заполненные ферментами, ускоряют реакции расщепления белков до аминокислот, липидов до глицерина и жирных -.кислот, полисахаридов до моносахаридов. В лизосомах разрушаются отмершие части клетки, целые и клетки.

Клеточные включения - скопления запасных питательных веществ: белков, жиров и углеводов.

Ядро - наиболее важная часть клетки. Оно покрыто двухмембранной оболочкой с порами, через которые одни вещества проникают в ядро, а Другие поступают в цитоплазму. Хромосомы - основные структуры ядра, носители наследственной информации о признаках организма. Она передается в процессе деления материнской клетки дочерним клеткам, а с половыми клетками - дочерним организмам. Ядро - место синтеза ДНК, иРНК, рРНК.

Задание:

Поясните, почему органоиды называют специализированными структурами клетки?

Ответ: органоиды называют специализированными структурами клетки, так как они выполняют строго определенные функции, в ядре хранится наследственная информация, в митохондриях синтезируется АТФ, в хлоропластах протекает фотосинтез и т.д.

Если у Вас есть вопросы по цитологии, то Вы можете обратиться за помощью к

Органоиды — постоянные, обязательно присутствующие, компоненты клетки, выполняющие специфические функции.

Эндоплазматическая сеть

Эндоплазматическая сеть (ЭПС) , или эндоплазматический ретикулум (ЭПР) , — одномембранный органоид. Представляет собой систему мембран, формирующих «цистерны» и каналы, соединенных друг с другом и ограничивающих единое внутреннее пространство — полости ЭПС. Мембраны с одной стороны связаны с цитоплазматической мембраной, с другой — с наружной ядерной мембраной. Различают два вида ЭПС: 1) шероховатая (гранулярная), содержащая на своей поверхности рибосомы, и 2) гладкая (агранулярная), мембраны которой рибосом не несут.

Функции: 1) транспорт веществ из одной части клетки в другую, 2) разделение цитоплазмы клетки на компартменты («отсеки»), 3) синтез углеводов и липидов (гладкая ЭПС), 4) синтез белка (шероховатая ЭПС), 5) место образования аппарата Гольджи.

Или комплекс Гольджи , — одномембранный органоид. Представляет собой стопки уплощенных «цистерн» с расширенными краями. С ними связана система мелких одномембранных пузырьков (пузырьки Гольджи). Каждая стопка обычно состоит из 4-х-6-ти «цистерн», является структурно-функциональной единицей аппарата Гольджи и называется диктиосомой. Число диктиосом в клетке колеблется от одной до нескольких сотен. В растительных клетках диктиосомы обособлены.

Аппарат Гольджи обычно расположен около клеточного ядра (в животных клетках часто вблизи клеточного центра).

Функции аппарата Гольджи: 1) накопление белков, липидов, углеводов, 2) модификация поступивших органических веществ, 3) «упаковка» в мембранные пузырьки белков, липидов, углеводов, 4) секреция белков, липидов, углеводов, 5) синтез углеводов и липидов, 6) место образования лизосом. Секреторная функция является важнейшей, поэтому аппарат Гольджи хорошо развит в секреторных клетках.

Лизосомы

Лизосомы — одномембранные органоиды. Представляют собой мелкие пузырьки (диаметр от 0,2 до 0,8 мкм), содержащие набор гидролитических ферментов. Ферменты синтезируются на шероховатой ЭПС, перемещаются в аппарат Гольджи, где происходит их модификация и упаковка в мембранные пузырьки, которые после отделения от аппарата Гольджи становятся собственно лизосомами. Лизосома может содержать от 20 до 60 различных видов гидролитических ферментов. Расщепление веществ с помощью ферментов называют лизисом .

Различают: 1) первичные лизосомы , 2) вторичные лизосомы . Первичными называются лизосомы, отшнуровавшиеся от аппарата Гольджи. Первичные лизосомы являются фактором, обеспечивающим экзоцитоз ферментов из клетки.

Вторичными называются лизосомы, образовавшиеся в результате слияния первичных лизосом с эндоцитозными вакуолями. В этом случае в них происходит переваривание веществ, поступивших в клетку путем фагоцитоза или пиноцитоза, поэтому их можно назвать пищеварительными вакуолями.

Автофагия — процесс уничтожения ненужных клетке структур. Сначала подлежащая уничтожению структура окружается одинарной мембраной, затем образовавшаяся мембранная капсула сливается с первичной лизосомой, в результате также образуется вторичная лизосома (автофагическая вакуоль), в которой эта структура переваривается. Продукты переваривания усваиваются цитоплазмой клетки, но часть материала так и остается непереваренной. Вторичная лизосома, содержащая этот непереваренный материал, называется остаточным тельцем. Путем экзоцитоза непереваренные частицы удаляются из клетки.

Автолиз — саморазрушение клетки, наступающее вследствие высвобождения содержимого лизосом. В норме автолиз имеет место при метаморфозах (исчезновение хвоста у головастика лягушек), инволюции матки после родов, в очагах омертвления тканей.

Функции лизосом: 1) внутриклеточное переваривание органических веществ, 2) уничтожение ненужных клеточных и неклеточных структур, 3) участие в процессах реорганизации клеток.

Вакуоли

Вакуоли — одномембранные органоиды, представляют собой «емкости», заполненные водными растворами органических и неорганических веществ. В образовании вакуолей принимают участие ЭПС и аппарат Гольджи. Молодые растительные клетки содержат много мелких вакуолей, которые затем по мере роста и дифференцировки клетки сливаются друг с другом и образуют одну большую центральную вакуоль . Центральная вакуоль может занимать до 95% объема зрелой клетки, ядро и органоиды оттесняются при этом к клеточной оболочке. Мембрана, ограничивающая растительную вакуоль, называется тонопластом. Жидкость, заполняющая растительную вакуоль, называется клеточным соком . В состав клеточного сока входят водорастворимые органические и неорганические соли, моносахариды, дисахариды, аминокислоты, конечные или токсические продукты обмена веществ (гликозиды, алкалоиды), некоторые пигменты (антоцианы).

В животных клетках имеются мелкие пищеварительные и автофагические вакуоли, относящиеся к группе вторичных лизосом и содержащие гидролитические ферменты. У одноклеточных животных есть еще сократительные вакуоли, выполняющие функцию осморегуляции и выделения.

Функции вакуоли: 1) накопление и хранение воды, 2) регуляция водно-солевого обмена, 3) поддержание тургорного давления, 4) накопление водорастворимых метаболитов, запасных питательных веществ, 5) окрашивание цветов и плодов и привлечение тем самым опылителей и распространителей семян, 6) см. функции лизосом.

Эндоплазматическая сеть, аппарат Гольджи, лизосомы и вакуоли образуют единую вакуолярную сеть клетки , отдельные элементы которой могут переходить друг в друга.

Митохондрии

1 — наружная мембрана;
2 — внутренняя мембрана; 3 — матрикс; 4 — криста; 5 — мультиферментная система; 6 — кольцевая ДНК.

Форма, размеры и количество митохондрий чрезвычайно варьируют. По форме митохондрии могут быть палочковидными, округлыми, спиральными, чашевидными, разветвленными. Длина митохондрий колеблется в пределах от 1,5 до 10 мкм, диаметр — от 0,25 до 1,00 мкм. Количество митохондрий в клетке может достигать нескольких тысяч и зависит от метаболической активности клетки.

Митохондрия ограничена двумя мембранами. Наружная мембрана митохондрий (1) гладкая, внутренняя (2) образует многочисленные складки — кристы (4). Кристы увеличивают площадь поверхности внутренней мембраны, на которой размещаются мультиферментные системы (5), участвующие в процессах синтеза молекул АТФ. Внутреннее пространство митохондрий заполнено матриксом (3). В матриксе содержатся кольцевая ДНК (6), специфические иРНК, рибосомы прокариотического типа (70S-типа), ферменты цикла Кребса.

Митохондриальная ДНК не связана с белками («голая»), прикреплена к внутренней мембране митохондрии и несет информацию о строении примерно 30 белков. Для построения митохондрии требуется гораздо больше белков, поэтому информация о большинстве митохондриальных белков содержится в ядерной ДНК, и эти белки синтезируются в цитоплазме клетки. Митохондрии способны автономно размножаться путем деления надвое. Между наружной и внутренней мембранами находится протонный резервуар , где происходит накопление Н + .

Функции митохондрий: 1) синтез АТФ, 2) кислородное расщепление органических веществ.

Согласно одной из гипотез (теория симбиогенеза) митохондрии произошли от древних свободноживущих аэробных прокариотических организмов, которые, случайно проникнув в клетку-хозяина, затем образовали с ней взаимовыгодный симбиотический комплекс. В пользу этой гипотезы свидетельствуют следующие данные. Во-первых, митохондриальная ДНК имеет такие же особенности строения как и ДНК современных бактерий (замкнута в кольцо, не связана с белками). Во-вторых, митохондриальные рибосомы и рибосомы бактерий относятся к одному типу — 70S-типу. В-третьих, механизм деления митохондрий сходен с таковым бактерий. В-четвертых, синтез митохондриальных и бактериальных белков подавляется одинаковыми антибиотиками.

Пластиды

1 — наружная мембрана; 2 — внутренняя мембрана; 3 — строма; 4 — тилакоид; 5 — грана; 6 — ламеллы; 7 — зерна крахмала; 8 — липидные капли.

Пластиды характерны только для растительных клеток. Различают три основных типа пластид : лейкопласты — бесцветные пластиды в клетках неокрашенных частей растений, хромопласты — окрашенные пластиды обычно желтого, красного и оранжевого цветов, хлоропласты — зеленые пластиды.

Хлоропласты. В клетках высших растений хлоропласты имеют форму двояковыпуклой линзы. Длина хлоропластов колеблется в пределах от 5 до 10 мкм, диаметр — от 2 до 4 мкм. Хлоропласты ограничены двумя мембранами. Наружная мембрана (1) гладкая, внутренняя (2) имеет сложную складчатую структуру. Наименьшая складка называется тилакоидом (4). Группа тилакоидов, уложенных наподобие стопки монет, называется граной (5). В хлоропласте содержится в среднем 40-60 гран, расположенных в шахматном порядке. Граны связываются друг с другом уплощенными каналами — ламеллами (6). В мембраны тилакоидов встроены фотосинтетические пигменты и ферменты, обеспечивающие синтез АТФ. Главным фотосинтетическим пигментом является хлорофилл, который и обусловливает зеленый цвет хлоропластов.

Внутреннее пространство хлоропластов заполнено стромой (3). В строме имеются кольцевая «голая» ДНК, рибосомы 70S-типа, ферменты цикла Кальвина, зерна крахмала (7). Внутри каждого тилакоида находится протонный резервуар, происходит накопление Н + . Хлоропласты, также как митохондрии, способны к автономному размножению путем деления надвое. Они содержатся в клетках зеленых частей высших растений, особенно много хлоропластов в листьях и зеленых плодах. Хлоропласты низших растений называют хроматофорами.

Функция хлоропластов: фотосинтез. Полагают, что хлоропласты произошли от древних эндосимбиотических цианобактерий (теория симбиогенеза). Основанием для такого предположения является сходство хлоропластов и современных бактерий по ряду признаков (кольцевая, «голая» ДНК, рибосомы 70S-типа, способ размножения).

Лейкопласты. Форма варьирует (шаровидные, округлые, чашевидные и др.). Лейкопласты ограничены двумя мембранами. Наружная мембрана гладкая, внутренняя образует малочисленные тилакоиды. В строме имеются кольцевая «голая» ДНК, рибосомы 70S-типа, ферменты синтеза и гидролиза запасных питательных веществ. Пигменты отсутствуют. Особенно много лейкопластов имеют клетки подземных органов растения (корни, клубни, корневища и др.). Функция лейкопластов: синтез, накопление и хранение запасных питательных веществ. Амилопласты — лейкопласты, которые синтезируют и накапливают крахмал, элайопласты — масла, протеинопласты — белки. В одном и том же лейкопласте могут накапливаться разные вещества.

Хромопласты. Ограничены двумя мембранами. Наружная мембрана гладкая, внутренняя или также гладкая, или образует единичные тилакоиды. В строме имеются кольцевая ДНК и пигменты — каротиноиды, придающие хромопластам желтую, красную или оранжевую окраску. Форма накопления пигментов различная: в виде кристаллов, растворены в липидных каплях (8) и др. Содержатся в клетках зрелых плодов, лепестков, осенних листьев, редко — корнеплодов. Хромопласты считаются конечной стадией развития пластид.

Функция хромопластов: окрашивание цветов и плодов и тем самым привлечение опылителей и распространителей семян.

Все виды пластид могут образовываться из пропластид. Пропластиды — мелкие органоиды, содержащиеся в меристематических тканях. Поскольку пластиды имеют общее происхождение, между ними возможны взаимопревращения. Лейкопласты могут превращаться в хлоропласты (позеленение клубней картофеля на свету), хлоропласты — в хромопласты (пожелтение листьев и покраснение плодов). Превращение хромопластов в лейкопласты или хлоропласты считается невозможным.

Рибосомы

1 — большая субъединица; 2 — малая субъединица.

Рибосомы — немембранные органоиды, диаметр примерно 20 нм. Рибосомы состоят из двух субъединиц — большой и малой, на которые могут диссоциировать. Химический состав рибосом — белки и рРНК. Молекулы рРНК составляют 50-63% массы рибосомы и образуют ее структурный каркас. Различают два типа рибосом: 1) эукариотические (с константами седиментации целой рибосомы — 80S, малой субъединицы — 40S, большой — 60S) и 2) прокариотические (соответственно 70S, 30S, 50S).

В составе рибосом эукариотического типа 4 молекулы рРНК и около 100 молекул белка, прокариотического типа — 3 молекулы рРНК и около 55 молекул белка. Во время биосинтеза белка рибосомы могут «работать» поодиночке или объединяться в комплексы — полирибосомы (полисомы) . В таких комплексах они связаны друг с другом одной молекулой иРНК. Прокариотические клетки имеют рибосомы только 70S-типа. Эукариотические клетки имеют рибосомы как 80S-типа (шероховатые мембраны ЭПС, цитоплазма), так и 70S-типа (митохондрии, хлоропласты).

Субъединицы рибосомы эукариот образуются в ядрышке. Объединение субъединиц в целую рибосому происходит в цитоплазме, как правило, во время биосинтеза белка.

Функция рибосом: сборка полипептидной цепочки (синтез белка).

Цитоскелет

Цитоскелет образован микротрубочками и микрофиламентами. Микротрубочки — цилиндрические неразветвленные структуры. Длина микротрубочек колеблется от 100 мкм до 1 мм, диаметр составляет примерно 24 нм, толщина стенки — 5 нм. Основной химический компонент — белок тубулин. Микротрубочки разрушаются под воздействием колхицина. Микрофиламенты — нити диаметром 5-7 нм, состоят из белка актина. Микротрубочки и микрофиламенты образуют в цитоплазме сложные переплетения. Функции цитоскелета: 1) определение формы клетки, 2) опора для органоидов, 3) образование веретена деления, 4) участие в движениях клетки, 5) организация тока цитоплазмы.

Включает в себя две центриоли и центросферу. Центриоль представляет собой цилиндр, стенка которого образована девятью группами из трех слившихся микротрубочек (9 триплетов), соединенных между собой через определенные интервалы поперечными сшивками. Центриоли объединены в пары, где они расположены под прямым углом друг к другу. Перед делением клетки центриоли расходятся к противоположным полюсам, и возле каждой из них возникает дочерняя центриоль. Они формируют веретено деления, способствующее равномерному распределению генетического материала между дочерними клетками. В клетках высших растений (голосеменные, покрытосеменные) клеточный центр центриолей не имеет. Центриоли относятся к самовоспроизводящимся органоидам цитоплазмы, они возникают в результате дупликации уже имеющихся центриолей. Функции: 1) обеспечение расхождения хромосом к полюсам клетки во время митоза или мейоза, 2) центр организации цитоскелета.

Органоиды движения

Присутствуют не во всех клетках. К органоидам движения относятся реснички (инфузории, эпителий дыхательных путей), жгутики (жгутиконосцы, сперматозоиды), ложноножки (корненожки, лейкоциты), миофибриллы (мышечные клетки) и др.

Жгутики и реснички — органоиды нитевидной формы, представляют собой аксонему, ограниченную мембраной. Аксонема — цилиндрическая структура; стенка цилиндра образована девятью парами микротрубочек, в его центре находятся две одиночные микротрубочки. В основании аксонемы находятся базальные тельца, представленные двумя взаимно перпендикулярными центриолями (каждое базальное тельце состоит из девяти триплетов микротрубочек, в его центре микротрубочек нет). Длина жгутика достигает 150 мкм, реснички в несколько раз короче.

Миофибриллы состоят из актиновых и миозиновых миофиламентов, обеспечивающих сокращение мышечных клеток.

    Перейти к лекции №6 «Эукариотическая клетка: цитоплазма, клеточная оболочка, строение и функции клеточных мембран»

Клетка – элементарная единица живой системы. Специфические функции в клетке распределены между органоидами – внутриклеточными структурами. Несмотря на многообразие форм, клетки разных типов обладают поразительным сходством в своих главных структурных особенностях.

Клеточная теория

По мере усовершенствования микроскопов появлялись все новые сведения о клеточном строении растительных и животных организмов.

С приходом в науку о клетке физических и химических методов исследования было выявлено удивительное единство в строении клеток разных организмов, доказана неразрывная связь между их структурой и функцией.

Основные положения клеточной теории

Клетка – основная единица строения и развития всех живых организмов. Клетки всех одно - и многоклеточных организмов сходны по своему строению, химическому составу, основным проявлением жизнедеятельности и обмену веществ. Размножаются клетки путём деления. В многоклеточных организмах клетки специализированы по выполняемым функциям и образуют ткани. Из тканей состоят органы.

В качестве подтверждения некоторых из приведенных выше положений клеточной теории назовем общие черты, характерные для животной и растительной клеток.

Общие признаки растительной и животной клетки

Единство структурных систем – цитоплазмы и ядра. Сходство процессов обмена веществ и энергии. Единство принципа наследственного кода. Универсальное мембранное строение. Единство химического состава. Сходство процесса деления клеток.

Таблица Отличительные признаки растительной и животной клетки

Признаки

Растительная клетка

Животная клетка

Пластиды

Хлоропласты, хромопласты, лейкопласты

Отсутствует

Способ питания

Автотрофный (фототрофный, хемотрофный).

Гетеротрофный (сапротрофный, хемотрофный).

Синтез АТФ

В хлоропластах, митохондриях.

В митохондриях.

Расщепление АТФ

В хлоропластах и всех частях клетки, где необходимы затраты энергии.

Клеточный центр

У низших растений.

Во всех клетках.

Целлюлозная клеточная стенка

Расположена снаружи от клеточной мембраны.

Отсутствует.

Включение

Запасные питательные вещества в виде зерен крахмала, белка, капель масла; в вакуоли с клеточным соком; кристаллы солей.

Запасные питательные вещества в виде зерен и капель (белки, жиры, углевод гликоген); конечные продукты обмена, кристаллы солей; пигменты.

Крупные полости, заполненные клеточным соком – водным раствором различных веществ, являющихся запасными или конечными продуктами. Осмотические резервуары клетки.

Сократительные, пищеварительные, выделительные вакуоли. Обычно мелкие.

Значение теории : она доказывает единство происхождения всех живых организмов на Земле.

Клеточные структуры

Рисунок Схема строения животной и растительной клеток

Органеллы

Строение

Функции

Цитоплазма

Находится между плазматической мембраной и ядром, включает различные органоиды. Пространство между органоидами заполнено цитозолем – вязким водным раствором разных солей и органических веществ, пронизанным системой белковых нитей – цитоскелетом.

Большинство химических и физиологических процессов клетки проходит в цитоплазме. Цитоплазма объединяет все клеточные структуры в единую систему, обеспечивает взаимосвязь по обмену веществами и энергией между органоидами клетки.

Наружная клеточная мембрана

Ультрамикроскопическая пленка, состоящая из двух мономолекулярных слоев белка и расположенного между ними бимолекулярного слоя липидов. Цельность липидного слоя может прерываться белковыми молекулами - "порами".

Изолирует клетку от окружающей среды, обладает избирательной проницаемостью, регулирует процесс поступления веществ в клетку; обеспечивает обмен веществ и энергии с внешней средой, способствует соединению клеток в ткани, участвует в пиноцитозе и фагоцитозе; регулирует водный баланс клетки и выводит из нее конечные продукты жизнедеятельности.

Эндоплазматическая сеть (ЭС)

Ультрамикроскопическая система мембран образующих трубочки, канальцы, цистерны, пузырьки. Строение мембран универсальное (как и наружной), вся сеть объединена в единое целое с наружной мембраной ядерной оболочки и наружной клеточной мембраной. Гранулярная ЭС несет рибосомы, гладкая лишена их.

Обеспечивает транспорт веществ, как в нутрии клетки, так и между соседними клетками. Делит клетку на отдельные секции, в которых одновременно происходят различные физиологические процессы и химические реакции. Гранулярная ЭС участвует в синтезе белка. В каналах ЭС образуются сложные молекулы белка, синтезируются жиры, транспортируются АТФ.

Рибосомы

Мелкие сферические органоиды, состоящие из рРНК и белка.

На рибосомах синтезируются белки.

Аппарат Гольджи

Микроскопические одномембранные органеллы, состоящие из стопочки плоских цистерн, по краям которых ответвляются трубочки, отделяющие мелкие пузырьки.

В общей системе мембран любых клеток – наиболее подвижная и изменяющаяся органелла. В цистернах накапливаются продукты синтеза распада и вещества, поступившие в клетку, а также вещества, которые выводятся из клетки. Упакованные в пузырьки, они поступают в цитоплазму: одни используются, а другие выводятся наружу.

Лизосомы

Микроскопические одномембранные органеллы округлой формы. Их число зависит от жизнедеятельности клетки и ее физиологического состояния. В лизосомах находятся лизирующие (растворяющие) ферменты, синтезированные на рибосомах.

Переваривание пищи, попавшей в животную клетку при фагоцитозе и пиноцитозе. Защитная функция. В клетках любых организмов осуществляют автолиз (саморастворение органелл) особенно в условиях пищевого или кислородного голодания у животных рассасывается хвост. У растений растворяются органеллы при образовании пробковой ткани сосудов древесины.

Выводы по лекции

Важным достижением биологической науки является формирование представлений о строении и жизнедеятельности клетки как структурной и функциональной единице организма. Наука, изучающая живую клетку во всех ее проявлениях, называется цитологией . Первые этапы развития цитологии, как области научного знания, были связаны с трудами Р. Гука, А. Левенгука, Т. Шванна, М. Шлейдена, Р. Вирхова, К. Бэра. Итогом их деятельности явилось формулирование и развитие основных положений клеточной теории. В процессах жизнедеятельности клетки принимают непосредственное участие разнообразные клеточные структуры. Цитоплазма обеспечивает деятельность всех клеточных структур как единой системы. Цитоплазматическая мембрана обеспечивает пропускную избирательность веществ в клетке и защищает ее от внешней среды. ЭС обеспечивает транспорт веществ как внутри клетки, так и между соседними клетками. В цистернах Аппарата Гольджи накапливаются продукты синтеза и распада веществ, поступившие в клетку, а также вещества, которые выводятся из клетки. В лизосомах происходит расщепление веществ, попавших в клетку.

Вопросы для самоконтроля

Используя знания о клеточной теории, докажите единство происхождения жизни на Земле. В чем сходство и различие в строении растительной и животной клеток? Как связано строение клеточной мембраны с ее функциями? Как происходит активное поглощение веществ клеткой? Какова связь между рибосомами и ЭС? Каковы строение и функции лизосом в клетке?

Клеточные структуры: митохондрии, пластиды, органоиды движения, включения. Ядро

Таблица Клеточные органеллы, их строение и функции

Органеллы

Строение

Функции

Митохондрии

Микроскопические органеллы, имеющие двухмембранное строение. Внешняя мембрана гладкая, внутренняя образует различной формы выросты – кристы. В матриксе митохондрии (полужидком веществе) находятся ферменты, рибосомы, ДНК, РНК.

Универсальная органелла является дыхательным и энергетическим центром. В процессе кислородного (окислительного) этапа в матриксе с помощью ферментов происходит расщепление органических веществ с освобождением энергии, которая идет на синтез АТФ на (кристах).

Лейкопласты

Микроскопические органеллы, имеющие двухмембранное строение. Внутренняя мембрана образует 2–3 выроста. Форма – округлая. Бесцветны.

Характерны для растительных клеток. Служат местом отложения запасных питательных веществ, главным образом крахмальных зерен. На свету их строение усложняется, и они преобразуются в хлоропласты. Образуются из пропластид.

Хлоропласты

Микроскопические органеллы, имеющие двухмембранное строение. Наружная мембрана гладкая. Внутренняя мембрана образует систему двухслойных пластин – тилакоидов стромы и тилакоидов гран. В мембранах тилакоидов гран между слоями молекул белков и липидов сосредоточены пигменты – хлорофилл и каротиноиды. В белково-липидном матриксе находятся собственные рибосомы, ДНК, РНК.

Характерны для растительных клеток органеллы фотосинтеза, способные создавать из неорганических веществ (CO2 и H2O) при наличии световой энергии и пигмента хлорофилла органические вещества – углеводы и свободный кислород. Синтез собственных белков. Могут образовываться из пластид или лейкопластов, а осенью перейти в хлоропласты (красные и оранжевые плоды, красные и желтые листья).

Хромопласты

Микроскопические органеллы, имеющие двухмембранное строение. Собственно хромопласты имеют шаровидную форму, а образовавшиеся из хлоропластов, принимают форму кристаллов каратинондов, типичную для данного вида растения. Окраска красная, оранжевая, желтая.

Характерны для растительных клеток. Придают лепесткам цветков окраску, привлекательную для насекомых-опылителей. В осенних листьях и зрелых плодах отделяющихся от растений, содержатся кристаллические каротиноиды?– конечные продукты обмена.

Клеточный центр

Ультрамикроскопическая органелла немембранного строения. Состоит из двух центриолей. Каждая имеет цилиндрическую форму, стенки образованы девятью триплетами трубочек, а в середине находится однородное вещество. Центриоли расположены перпендикулярно друг другу.

Принимает участие в делении клеток животных и низших растений. В начале деления (в профазе) центриоли расходятся к разным полюсам клетки. От центриолей к центромерам хромосом отходят нити веретена деления. В анафазе эти нити притягивают хроматиды к полюсам. После окончания деления центриоли остаются в дочерних клетках. Удваиваются и образуют клеточный центр.

Клеточные включения (непостоянные структуры)

Плотные в виде гранул включения, имеющие мембрану (например, вакуоли).

Органоиды движения

Реснички – многочисленные цитоплазмические выросты на поверхности мембраны.

Удаление частичек пыли (реснитчатые эпителии верхних дыхательных путей), передвижение (одноклеточные организмы).

Жгутики – единичные цитоплазматические выросты на поверхности клетки.

Передвижение (сперматозоиды, зооспоры, одноклеточные организмы).

Ложные ножки (псевдоподии) – амебовидные выступы цитоплазмы.

Образуются у животных в разных местах цитоплазмы для захвата пищи, для передвижения.

Миофибриллы – тонкие нити до 1 см. длиной и больше.

Служат для сокращения мышечных волокон, вдоль которых они расположены.

Цитоплазма, осуществляющая струйчатое и круговое движение.

Перемещение органелл клетки по отношению к (при фотосинтезе), тепла, химического раздражителя.

Рисунок Схема состав и функции клеточных включений

Фагоцитоз – захват плазматической мембраной твёрдых частиц и втягивание их внутрь.

Плазматическая мембрана образует впячивание в виде тонкого канальца, в который попадает жидкость с растворёнными в ней веществами. Этот способ называют пиноценозом .

Ядро

Все организмы, имеющие клеточное строение без оформленного ядра называются прокариотами . Все организмы, имеющие клеточное строение с ядром называются эукариотами .

Таблица Ядерные структуры, их строение и функции

Структуры

Строение

Функции

Ядерная оболочка

Двухслойная пористая. Наружная мембрана переходит в мембраны ЭС. Свойственна всем клеткам животных и растений, кроме бактерий и сине-зеленых, которые не имеют ядра.

Отделяет ядро от цитоплазмы. Регулирует транспорт веществ из ядра в цитоплазму (РНК и субъединицы рибосом) и из цитоплазмы в ядро (белки, жир, углеводы, АТФ, вода, ионы).

Хромосомы (хроматин)

В интерфазной клетке хроматин имеет вид мелкозернистых нитевидных структур, состоящих из молекул ДНК и белковой обкладки. В делящихся клетках хроматиновые структуры спирализуются и образуют хромосомы. Хромосома состоит из двух хроматид, и после деления ядра становится однохроматидной. К началу следующего деления у каждой хромосомы достраивается вторая хроматида. Хромосомы имеют первичную перетяжку, на которой расположена центромера; перетяжка делит хромосому на два плеча одинаковой или разной длины. У ядрышковых хромосом есть вторичная перетяжка.

Хроматиновые структуры – носители ДНК. ДНК состоит из участков – генов, несущих наследственную информацию и передающихся от предков к потомкам через половые клетки. Совокупность хромосом, а, следовательно, и генов половых клеток родителей передается детям, что обеспечивает устойчивость признаков, характерных для данной популяции, вида. В хромосомах синтезируется ДНК, РНК, что служит необходимым фактором передачи наследственной информации при делении клеток и построении молекул белка.

Шаровидное тело, напоминающее клубок нити. Состоит из белка и РНК. Образуется на вторичной перетяжке ядрышковой хромосомы. При делении клеток распадается.

Формирование половинок рибосом из рРНК и белка. Половинки (субъединицы) рибосом через поры в ядерной оболочке выходят в цитоплазму и объединяются в рибосомы.

Ядерный сок (кариолимфа)

Полужидкое вещество, представляющее коллоидный раствор белков, нуклеиновых кислот, углеводов, минеральных солей. Реакция кислая.

Участвует в транспорте веществ и ядерных структур, заполняет пространство между ядерными структурами; во время деления клеток смешивается с цитоплазмой.

Рисунок Схема строения ядра клетки

Функции ядра клетки:

    регуляция процессов обмена веществ в клетке; хранение наследственной информации и ее воспроизводство; синтез РНК; сборка рибосом.

Выводы по лекции

В митохондриях происходит расщепление органических веществ с освобождением энергии, которая идет на синтез АТФ. Важную роль играют пластиды в обеспечении процессов жизнедеятельности растительной клетки. К органоидам движения относят клеточные структуры: реснички, жгутики, миофибриллы. Все клеточные организмы делятся на прокариоты (безъядерные) и эукариоты (с ядром). Ядро представляет собой структурный и функциональный центр, координирующий ее обмен веществ, руководящий процессами самовоспроизведения и хранения наследственной информации.

Вопросы для самоконтроля

Почему митохондрии образно называют "силовыми станциями" клетки? Какие структуры клетки способствуют ее движению? Что относится к клеточным включениям? Какова их роль? Каковы функции ядра в клетке?

Органические вещества в составе клетки (углеводы, белки, липиды, нуклеиновые кислоты, АТФ, витамины и др.)

Биологические полимеры – органические соединения, входящие в состав клеток живых организмов. Полимер – многозвенная цепь простых веществ – мономеров (n ÷ 10тыч. – 100тыс. моном.)

Свойства биополимеров зависят от строения их молекул, от числа и разнообразия мономерных звеньев.

Если мономеры разные, то повторяющиеся чередования их в цепи создают регулярный полимер.

…А – А – В – А – А – В… регулярный

…А – А – В – В – А – В – А… нерегулярный

Углеводы

Общая формула Сn(H2O)m

Углеводы в организме человека играют роль энергетических веществ. Самые важные из них – сахароза, глюкоза, фруктоза , а также крахмал . Они быстро усваиваются ("сгорают") в организме. Исключение составляет клетчатка (целлюлоза), которой особенно много в растительной пище. Она практически не усваивается организмом, но имеет большое значение: выступает в роли балласта и помогает пищеварению, механически очищая слизистые оболочки желудка и кишечника. Углеводов много в картофеле и овощах, крупах, макаронных изделиях, фруктах и хлебе.

Глюкоза, рибоза, фруктоза, дезоксирибоза - моносахариды

Сахароза - дисахариды

Крахмал, гликоген, целлюлоза - полисахариды

Нахождение в природе: в растениях, фруктах, в цветочной пыльце, овощах (чеснок, свекла), картофеле, рисе, кукурузе, зерне пшеницы, древесине…

Их функции:

    энергетическая: при окислении до СО2 и Н2О высвобождается энергия; избыток энергии запасается в клетках печени и мышц в виде гликогена; строительная: в растительной клетке – прочная основа клеточных стенок (целлюлоза); структурная: входят в состав межклеточного вещества кожи сухожилий хрящей; узнавание клетками др.: в составе клеточных мембран, если разделённые клетки печени смешать с клетками почек, то они самостоятельно разойдутся на две группы благодаря взаимодействию однотипных клеток.

Липиды (липоиды, жиры)

К липидам относятся разнообразные жиры, жироподобные вещества, фосфорлипиды… Все они нерастворимы в воде, но растворимы в хлороформе, эфире…

Нахождение в природе: в клетках животных и человека в клеточной мембране; между клетками – подкожный слой жира.

Функции:

    теплоизоляционная (у китов, ластоногих …); запасное питательное вещество; энергетическая: при гидролизе жиров выделяется энергия; структурная: некоторые липиды служат составной частью клеточных мембран.

Жиры тоже служат для человеческого организма источником энергии. Их организм откладывает "про запас" и они служат энергетическим источником долговременного пользования. Кроме того, жиры обладают низкой теплопроводностью и предохраняют организм от переохлаждения. Неудивительно, что в традиционном рационе северных народов так много животных жиров. Для людей, занятых тяжелым физическим трудом, затраченную энергию тоже проще всего (хотя и не всегда полезней) компенсировать жирной пищей. Жиры входят в состав клеточных стенок, внутриклеточных образований, в состав нервной ткани. Еще одна функция жиров – поставлять в ткани организма жирорастворимые витамины и другие биологически активные вещества.

Белки

Рисунок 1.2.1. Молекула белка

Если в R заменить ещё один Н на аминогруппу NH2, получим аминокислоту:

Белки – биополимеры, мономерами которых являются аминокислоты.

Образование линейных молекул белков происходит в результате реакций аминокислот др. с др.

Источниками белков могут служить не только животные продукты (мясо, рыба, яйца, творог), но и растительные, например, плоды бобовых (фасоль, горох, соя, арахис, которые содержат до 22–23% белков по массе), орехи и грибы. Однако больше всего белка в сыре (до 25 %), мясных продуктах (в свинине 8–15 %, баранине 16–17 %, говядине 16–20 %), в птице (21 %), рыбе (13–21 %), яйцах (13 %), твороге(14 %). Молоко содержит 3 % белков, а хлеб 7–8 %. Среди круп чемпион по белкам – гречневая крупа (13 % белков в сухой крупе), поэтому именно ее рекомендуют для диетического питания. Чтобы избежать "излишеств" и в то же время обеспечить нормальную жизнедеятельность организма, надо, прежде всего, дать человеку с пищей полноценный по ассортименту набор белков. Если белков в питании недостает, взрослый человек ощущает упадок сил, у него снижается работоспособность, его организм хуже сопротивляется инфекции и простуде. Что касается детей, то они при неполноценном белковом питании сильно отстают в развитии: дети растут, а белки – основной "строительный материал " природы. Каждая клетка живого организма содержит белки. Мышцы, кожа, волосы, ногти человека состоят главным образом из белков. Более того, белки – основа жизни, они участвуют в обмене веществ и обеспечивают размножение живых организмов.

Строение:

    первичная структура – линейная, с чередованием аминокислот; вторичная – в виде спирали со слабыми связями между витками (водородными); третичная – спираль свёрнутая в клубок; четвертичная – при объединении нескольких цепей, различных по первичной структуре.

При радиации, больших температурах, экстремальных значениях pH, в спирте, ацетоне белок разрушается - реакция денатурации.

Таблица 1.2.1. Строение белка

Первичная структура – определенная последовательность α-аминокислотных остатков в полипептидной цепи

Вторичная структура – конформация полипептидной цепи, закрепленная множеством водородных связей между группами N-H и С=О. Одна из моделей вторичной структуры – α-спираль, обусловленная кооперативными внутримолекулярными Н-связями. Другая модель – b-форма ("складчатый лист"), в которой преобладают межцепные (межмолекулярные) Н-связи

Третичная структура - форма закрученной спирали в пространстве, образованная главным образом за счет дисульфидных мостиков - S-S-, водородных связей, гидрофобных и ионных взаимодействий

Четвертичная структура – агрегаты нескольких белковых макромолекул (белковые комплексы), образованные за счет взаимодействия разных полипептидных цепей

Функции:

    строительная: белки являются обязательным компонентом всех клеточных структур; структурная: белки в соединении с ДНК составляют тело хромосом, а с РНК – тело рибосом; ферментативная: катализатором хим. реакций выступает любой фермент – белок, но очень специфичный; транспортная: перенос О2, гормонов в теле животных и человека; регуляторная: белки могут выполнять регуляторную функцию, если они являются гормонами. Например инсулин (гормон, поддерживающий работу поджелудочной железы) активизирует захват клетками молекул глюкозы и расщепление или запасание их внутри клетки. При недостатке инсулина глюкоза накапливается в крови, развивая диабет; защитная: при попадании инородных тел в организме вырабатываются защитные белки – антитела , которые связываются с чужеродными, соединяются и подавляют их жизнедеятельность. Такой механизм сопротивления организма называют иммунитетом; энергетическая: при недостатке углевода и жиров могут окислиться молекулы аминокислот.

Аденозинтрифосфорная кислота (АТФ) – универсальный переносчик и основной аккумулятор энергии в живых кленках, который необходим для синтеза органических веществ, движения, производства тепла, нервных импульсов, свечений. АТФ содержится во всех клетках растений и животных.

Представляет собой нуклеотид, образованный остатками азотистого основания (аденина), сахара (рибозы) и тремя остатками фосфорной кислоты.

АТФ – нестабильная молекула: при отщеплении концевого остатка фосфорной кислоты. АТФ переходит в АДФ (аденозиндифосфорную кислоту), при этом выделяется около 30,5 кДж.

Рисунок 1.2.2. Строение молекулы АТФ

Гормоны органические соединения, которые могут иметь белковую природу (гормоны поджелудочной железы) и могут относиться к липидам (половые гормоны), могут быть производными аминокислот. Гормоны образуются как животными, так и растениями. Гормоны осуществляют разнообразные функции:

    регулируют содержание ионов натрия, воды в организме; обеспечивают половое созревание; гормоны тревоги и стресса усиливают выход глюкозы в кровь и, следовательно, обуславливают активное использование энергии; сигнальные гормоны сообщают о нахождении пищи, об опасности; у растений свои гормоны, ускоряющие созревание плодов, привлекающие насекомых.

Нуклеиновые кислоты – биополимеры, мономерами которых являются нуклеотиды.

Рисунок 1.2.3. Синтез нуклеиновых кислот

Рисунок 1.2.4. Схематическое строение ДНК (многоточием обозначены водородные связи)

Молекула ДНК представляет собой структуру, состоящую из двух нитей, которые по всей длине соединены друг с другом водородными связями. (рис. 1.2.4)

Рисунок 1.2.5. Участок молекулы ДНК

Особенностью структуры ДНК является то, что против азотистого основания А в одной цепи лежит азотистое основание Т в другой цепи, а против азотистого основания Г всегда расположено азотистое основание Ц. Сказанное можно показать в виде схемы:

Эти пары оснований называют комплементарными основаниями (дополняющими друг друга). Нити ДНК, в которых основания расположены комплементарно друг другу, называют комплементарными нитями. На рис. 1.2.5 приведены две нити ДНК, которые соединены комплементарными участками.

Порядок расположения нуклеотидов в молекулах ДНК определяет порядок расположения аминокислот в линейных молекулах белков.

Таблица Сравнительная характеристика ДНК и РНК

Признаки сравнения

Местонахождение в клетке

Ядро, митохондрии, хлоропласты

Ядро, рибосомы, цитоплазмы, митохондрии, хлоропласты

Местонахождение в ядре

Хромосомы

Строение макромолекулы

Двойной неразветвленный линейный полимер, свернутый правозакрученной спиралью

Одинарная полинуклеотидная цепочка

Состав нукотидов

Азотистое основание (аденин, гуанин, тимин, цитозин); дезоксирибоза (углевод); остаток фосфорной кислоты

Азотистое основание (аденин, гуанин, урацил, цитозин); рибоза (углевод); остаток фосфорной кислоты

Химическая основа хромосомного генетического материала (гена); синтез ДНК и РНК, информация о структуре белков

Информационная (иРНК) передает код наследственной информации о первичной структуре белковой молекулы; рибосомальная (рРНК) входит в состав рибосом; транспортная (тРНК) переносит аминокислоты к рибосомам.

Витамины

Еще в конце 19 века ученые обнаружили, что страшная болезнь бери - бери, при которой происходит поражение нервной системы, вызвана нехваткой какого-то особого вещества в пище. В 1912 г. польский исследователь Казимеж Функ (1884–1967) выделил вещество из рисовых отрубей и назвал его витамином (от лат. vita – "жизнь"). Так называют химические соединения, которые требуются для нормальной жизнедеятельности организма в очень незначительных количествах. Организм "не умеет" самостоятельно синтезировать витамины. Поэтому очень важно пополнять организм витаминосодержащими продуктами питания. Недостаток витаминов в организме является причиной тяжелого заболевания – авитаминоза .

Здоровый человек в нормальных жизненных условиях должен стараться полностью покрывать свою потребность в витаминах за счет разнообразного и полноценного питания. Обращаться к аптечным препаратам, содержащим витамины, следует в тех случаях, когда вы испытываете постоянный или сезонный (осенью, весной) дефицит витаминов, а также при тяжелых стрессах. Бессистемное самодеятельное "поедание" витаминных пилюль может вызвать неприятные последствия в виде гипервитаминоза, когда даже необходимое количество витаминов не усваивается, а выводится организмом.

Витамины

Еще в конце 19 века ученые обнаружили, что страшная болезнь бери-бери, при которой происходит поражение нервной системы, вызвана нехваткой какого-то особого вещества в пище. В 1912 г. польский исследователь Казимеж Функ (1884–1967) выделил такое вещество из рисовых отрубей и назвал его витамином (от лат. vita – "жизнь"). Сейчас хорошо изучены около 25 витаминов. Химический состав и названия их очень сложны, поэтому им присвоили буквенные символы. Принято все витамины разделять на две большие группы: водорастворимые и жирорастворимые .

Среди водорастворимых витаминов главные:

1. В1 – тиамин , впервые найденный в белокочанной капусте; потом его обнаружили также в некоторых крупах, сырой рыбе, дрожжах и проросшей пшенице. Этот витамин регулирует обмен веществ, нервную деятельность и ответствен за состояние сердечно-сосудистой системы. Отсутствие В1 в пище вызывает бери-бери – тяжелейшую болезнь суставов, сопряженную с поражением нервной системы, сердца и сосудов. Бери-бери распространена в тех регионах Юго-Восточной Азии, где население питается скудно и однообразно, в основном лишь очищенным рисом, в котором витамина В1 почти нет. Суточная потребность организма в витамине В1 – 1,5–2,0 мг.

2. В2 – рибофлавин . Регулирует обмен веществ, повышает остроту зрения, улучшает функцию печени и нервной системы, а также состояние кожи. Источники витамина В2 – дрожжи, мясо, рыба, печень и другие субпродукты (почки, сердце, язык), яичный желток, молочные продукты, бобовые и многие крупы. Суточная потребность организма в витамине В2 – 2,0–2,5 мг;

3. РР – никотиновая кислота (ниацин) регулирует клеточное дыхание и сердечную деятельность. Источником витамина РР служат дрожжи, мясные и молочные продукты, зерновые культуры. Кроме того, это один из немногих витаминов, которые могут образовываться в организме человека. Витамин РР образуется из триптофана – аминокислоты, входящей в состав поступающих с пищей белков. Суточная потребность организма в витамине РР – 15–20 мг;

4. В6 – пиридоксин , участвует в обменных процессах, необходим для усвоения аминокислот и для синтеза из триптофана витамина РР. Суточная потребность организма в витамине В6 – 2 мг;

5. ВC – фолацин , фолиевая кислота и ее производные, регулируют кроветворение и жировой обмен. Содержится в печени, дрожжах, многих овощах (зелени петрушки, шпината, в листовом салате). Суточная потребность организма в витамине ВC – 2,0–2,5 мг.

6. В12 – цианкобаламин . Предупреждает малокровие. Присутствует в говяжьей и свиной печени, мясе кроликов и кур, яйцах, рыбе, молоке. Суточная потребность организма в витамине В12 – 3 мг.

7. С – аскорбиновая кислота , предохраняет от цинги, повышает иммунитет. Источники этого витамина в питании – свежие и консервированные овощи, фрукты, ягоды. Особенно богаты "аскорбинкой" плоды шиповника, смородина, петрушка, укроп, а среди дикорастущих – крапива, кислица, черемша. Аскорбиновая кислота неустойчива: на воздухе она легко окисляется до дегидроаскорбиновой кислоты, не имеющей витаминных свойств. Это надо учитывать при кулинарной обработке овощей и фруктов. Суточная потребность организма в витамине С – 75–100 мг.

8. Р – рутин (биофлавоноид) сосудоукрепляющее средство, проявляет активность вместе с витамином С. Особенно много его в смородине, шиповнике, черноплодной рябине (аронии), цитрусовых и зеленом чае. Суточная потребность организма в витамине Р – 25–50 мг.

Среди жирорастворимых витаминов наиболее важны:

1. А – ретинол и его производные, улучшает состояние кожи и слизистых оболочек глаз, повышает иммунитет, а главное, обеспечивает остроту зрения в сумерках. При недостатке витамина А возникает "куриная слепота" (человек плохо видит в вечернее время). Ретинол содержится в молоке, сливочном масле, сыре, рыбьем жире, а также может синтезироваться в печени человека из провитамина А – каротина, источником которого являются морковь, томаты и облепиха. Суточная потребность организма в витамине А – 1,5 – 2,0 мг (или 6 мг каротина);

2. D – эргокальциферол , оказывает противорахитное действие и помогает усвоению кальция. Он совершенно необходим растущему организму в период формирования и развития костей и зубов. Витамин D содержится в рыбьем жире, икре, сливочном масле, яйцах, молоке. Помимо этого, он образуется в организме под влиянием солнечных лучей. Суточная потребность организма в витамине D – 0,01 мг.

3. Е – токоферол , влияет на функции половых желез и способствует нормальному протеканию беременности , способствует усвоению жирорастворимых витаминов, участвует в обмене веществ. Содержится в растительном масле, гречневой крупе, бобовых. Суточная потребность организма в витамине Е – 12–15 мг.

4. К – антигеморрагический фактор , регулирует свертываемость крови, предотвращает возникновение кровотечений. Источниками этого витамина служат картофель, капуста, тыква, шпинат, щавель, печень. Суточная потребность организма в витамине К – 0,2–0,3 мг.

Выводы по лекции

К основным органическим веществам в составе клетки относят белки, углеводы, жиры, нуклеиновые кислоты и АТФ. Углеводы в жизни растений, животных, грибов и микроорганизмов играют роль энергетических веществ. Жиры – основной структурный компонент клеточных мембран и источник энергии. Они претерпевают в клетке сложные превращения. Белки - биологические полимеры, мономерами которых являются 20 важнейших аминокислот, выполняют ряд важнейших функций в клетке. Строительная: белки являются обязательным компонентом всех клеточных структур; структурная: белки в соединении с ДНК составляют тело хромосом, а с РНК – тело рибосом; ферментативная: катализатор хим. реакций – специфичный фермент – белок; транспортная: перенос О2, гормонов в теле животных и человека; регуляторная: (гормоны) часть гормонов – белки, например инсулин, – гормон, поддерживающий железы, активизирует захват клетками молекул глюкозы и расщепление или запасание их внутри клетки. При недостатке инсулина глюкоза накапливается в крови, развивая диабет; защитная: при попадании инородных тел в организм вырабатываются защитные белки – антитела, которые связываются с чужеродными, соединяются и подавляют их жизнедеятельность. Такой механизм сопротивления организма называют иммунитетом; энергетическая: при недостатке углевода и жиров могут окислится молекулы аминокислот. ДНК – молекулы наследственности, состоят из мономеров – нуклеотидов. Нуклеотиды ДНК и РНК имеют черты сходства и различия в строении и выполняют разные функции. Выявлено большое значение витаминов для организмов.

Вопросы для самоконтроля

Какие углеводы характерны для растительной клетки, для животной клетки? Укажите функции углеводов. Охарактеризуйте строение молекул белков в связи с их функциями в клетке. Что собой представляет первичная, вторичная, третичная и четвертичная структура белковой молекулы? В чем особенность строения молекулы ДНК? Какие компоненты входят в состав нуклеотидов? Какие функции выполняют ДНК и РНК?

По материалам сайта http://umka. *****

Все живые существа и организмы на состоят из клеток: растения, грибы, бактерии, животные, люди. Несмотря на минимальный размер, все функции целого организма выполняет клетка. Внутри нее протекают сложные процессы, от которых зависит жизнеспособность тела и работа его органов.

Вконтакте

Структурные особенности

Учёные занимаются изучением особенности строения клетки и принципов ее работы. Детально рассмотреть особенности структуры клетки можно только при помощи мощного микроскопа.

Все наши ткани — кожные покровы, кости, внутренние органы состоят из клеток, которые являются строительным материалом , бывают разных форм и размеров, каждая разновидность выполняет определённую функцию, но основные особенности их строения сходны.

Сначала выясним, что лежит в основе структурной организации клеток . В ходе проведенных исследований ученые установили, что клеточным фундаментом является мембранный принцип. Получается, что все клетки образованы из мембран, которые состоят из двойного слоя фосфолипидов, куда с наружной и внутренней стороны погружены молекулы белков.

Какое свойство характерно для всех типов клеток: одинаковое строение, а также функционал — регулирование процесса обмена веществ, использование собственного генетического материала (наличие и РНК ), получение и расход энергии.

В основе структурной организации клетки выделяются следующие элементы, выполняющие определенную функцию:

  • мембрана — клеточная оболочка, состоит из жиров и протеинов. Ее основная задача – отделять вещества, находящиеся внутри, от внешней среды. Структуру имеет полупроницаемую: способна пропускать и оксид углерода;
  • ядро – центральная область и главный компонент, отделяется от других элементов мембраной. Именно внутри ядра находится информация о росте и развитии, генетический материал, представленный в виде молекул ДНК, входящих в состав ;
  • цитоплазма — это жидкая субстанция, образующая внутреннюю среду, где происходят разнообразные жизненно важные процессы, содержит в себе очень много важных компонентов.

Из чего состоит клеточное содержимое, каковы функции цитоплазмы и ее основных компонентов:

  1. Рибосома — важнейший органоид, который необходим для процессов биосинтеза белков из аминокислот, белки выполняют огромное количество жизненно важных задач.
  2. Митохондрии – ещё один компонент, находящийся внутри цитоплазмы. Его можно описать одним словосочетанием – энергетический источник. Их функция заключается в обеспечении компонентов питанием для дальнейшего производства энергии.
  3. Аппарат Гольджи состоит из 5 – 8 мешочков, которые соединены между собой. Основная задача этого аппарата – передача протеинов в другие части клетки для обеспечения энергетического потенциала.
  4. Очистку от повреждённых элементов производят лизосомы .
  5. Транспортировкой занимается эндоплазматическая сеть, по которой белки перемещают молекулы полезных веществ.
  6. Центриоли отвечают за воспроизводство.

Ядро

Поскольку — клеточный центр, поэтому следует уделить его строению и функциям особое внимание. Данный компонент является важнейшим элементом для всех клеток: содержит наследственные признаки. Без ядра стали бы невозможными процессы размножения и передачи генетической информации . Посмотрите на рисунок, изображающий строение ядра.

  • Ядерная оболочка, которая выделена сиреневым цветом, пропускает внутрь нужные веществам и выпускает обратно через поры — маленькие отверстия.
  • Плазма представляет собой вязкую субстанцию, в ней находятся все остальные ядерные компоненты.
  • ядро размещается в самом центре, имеет форму сферы. Его главная функция – образование новых рибосом.
  • Если рассмотреть центральную часть клетки в разрезе, то можно увидеть малозаметные синие переплетения — хроматин, главное вещество, который состоит из комплекса белков и длинных нитей ДНК, несущих в себе необходимую информацию.

Клеточная мембрана

Давайте подробнее рассмотрим работу, строение и функции этого компонента. Ниже представлена таблица, наглядно показывающая важность внешней оболочки.

Хлоропласты

Это ещё один наиважнейший компонент. Но почему о хлоропластах не было упомянуто раньше, спросите вы. Да потому, что этот компонент содержится только в клетках растений. Главное различие между животными и растениями заключается в способе питания: у животных оно гетеротрофное, а у растений автотрофное. Это означает, что животные не способны создавать, то есть синтезировать органические вещества из неорганических – они питаются готовыми органическими веществами. Растения же, напротив, способны осуществлять процесс фотосинтеза и содержат особые компоненты — хлоропласты. Это пластиды зеленого оттенка, содержащие вещество хлорофилл. С его участием энергия света преобразуется в энергию химических связей органических веществ.

Интересно! Хлоропласты в большом объеме сосредоточены главным образом в надземной части растений — зелёных плодах и листьях.

Если вам зададут вопрос: назовите важную особенность строения органических соединений клетки, то ответ можно дать следующий.

  • многие из них содержат атомы углерода, которые обладают различными химическими и физическими свойствами, а также способны соединяться друг с другом;
  • являются носителями, активными участниками разнообразных процессов, протекающих в организмах, либо являются их продуктами. Имеются ввиду гормоны, разные ферменты, витамины;
  • могут образовывать цепи и кольца, что обеспечивает многообразие соединений;
  • разрушаются при нагревании и взаимодействии с кислородом;
  • атомы в составе молекул объединяются друг с другом с помощью ковалентных связей, не разлагаются на ионы и потому медленно взаимодействуют, реакции между веществами протекают очень долго — по нескольку часов и даже дней.

Строение хлоропласт

Ткани

Клетки могут существовать по одной, как в одноклеточных организмах, но чаще всего они объединяются в группы себе подобных и образуют различные тканевые структуры, из которых и состоит организм. В теле человека существует несколько видов тканей:

  • эпителиальная – сосредоточена на поверхности кожных покровов, органов, элементов пищеварительного тракта и дыхательной системы;
  • мышечная — мы двигаемся благодаря сокращению мышц нашего тела, осуществляем разнообразные движения: от простейшего шевеления мизинцем, до скоростного бега. Кстати, биение сердца тоже происходит за счёт сокращения мышечной ткани;
  • соединительная ткань составляет до 80 процентов массы всех органов и играет защитную и опорную роль;
  • нервная — образует нервные волокна. Благодаря ей по организму проходят различные импульсы.

Процесс воспроизводства

На протяжении всей жизни организма происходит митоз – так называют процесс деления, состоящий из четырёх стадий:

  1. Профаза . Две центриоли клетки делятся и направляются в противоположные стороны. Одновременно с этим хромосомы образуют пары, а оболочка ядра начинает разрушаться.
  2. Вторая стадия получила название метафазы . Хромосомы располагаются между центриолями, постепенно внешняя оболочка ядра полностью исчезает.
  3. Анафаза является третьей стадией, на протяжении которой продолжается движение центриолей в противоположном друг от друга направлении, а отдельные хромосомы также следуют за центриолями и отодвигаются друг от друга. Начинает сжиматься цитоплазма и вся клетка.
  4. Телофаза – окончательная стадия. Цитоплазма сжимается до тех пор, пока не появятся две одинаковые новые клетки. Формируется новая мембрана вокруг хромосом и появляется одна пара центриолей у каждой новой клетки.

Интересно! Клетки у эпителия делятся быстрее, чем у костной ткани. Все зависит от плотности тканей и других характеристик. Средняя продолжительность жизни основных структурных единиц составляет 10 дней.

Строение клетки. Строение и функции клетки. Жизнь клетки.

Вывод

Вы узнали каково строение клетки — самой важной составляющей организма. Миллиарды клеток составляют удивительно мудро организованную систему, которая обеспечивает работоспособность и жизнедеятельность всех представителей животного и растительного мира.

На заре развития жизни на Земле все клеточные формы были представлены бактериями. Они всасывали органические вещества, растворённые в первичном океане, через поверхность тела.

Со временем некоторые бактерии приспособились производить органические вещества из неорганических. Для этого они использовали энергию солнечного света. Возникла первая экологическая система, в которой эти организмы были производителями. В результате этого в атмосфере Земли появился кислород, выделяемый этими организмами. С его помощью можно из той же самой пищи получить гораздо больше энергии, а добавочную энергию использовать на усложнение строения тела: разделение тела на части.

Одно из важных достижений жизни — разделение ядра и цитоплазмы. В ядре находится наследственная информация. Специальная мембрана вокруг ядра позволила защитить от случайных повреждений. По мере необходимости цитоплазма получает из ядра команды, направляющие жизнедеятельность и развитие клетки.

Организмы, у которых ядро отделено от цитоплазмы, образовали надцарство ядерных (к ним относятся — растения, грибы, животные).

Таким образом, клетка — основа организации растений и животных — возникла и развилась в ходе биологической эволюции.

Даже не вооружённым глазом, а ещё лучше под лупой можно видеть, что мякоть зрелого арбуза состоит из очень мелких крупинок, или зёрнышек. Это клетки — мельчайшие «кирпичики», из которых состоят тела всех живых организмов, в том числе и растительных.

Жизнь растения осуществляется соединённой деятельностью его клеток, создающих единое целое. При многоклеточности частей растения существует физиологическое разграничение их функций, специализация различных клеток в зависимости от местоположения их в теле растения.

Растительная клетка отличается от животной тем, что имеет плотную оболочку, покрывающую внутреннее содержимое со всех сторон. Клетка не является плоской (как её принято изображать), она скорей всего похожа на очень маленький пузырёк, наполненный слизистым содержимым.

Строение и функции растительной клетки

Рассмотрим клетку как структурно-функциональную единицу организма. Снаружи клетка покрыта плотной клеточной стенкой, в которой имеются более тонкие участки — поры. Под ней находится очень тонкая плёнка — мембрана, покрывающая содержимое клетки — цитоплазму. В цитоплазме есть полости — вакуоли, заполненные клеточным соком. В центре клетки или около клеточной стенки расположено плотное тельце — ядро с ядрышком. От цитоплазмы ядро отделено ядерной оболочкой. По всей цитоплазме распределены мелкие тельца — пластиды.

Строение растительной клетки

Строение и функции органоидов растительной клетки

Органоид Рисунок Описание Функция Особенности

Клеточная стенка или плазматическая мембрана

Бесцветная, прозрачная и очень прочная

Пропускает в клетку и выпускает из клетки вещества.

Клеточная мембрана полупроницаемая

Цитоплазма

Густое тягучее вещество

В ней располагаются все другие части клетки

Находится в постоянном движении

Ядро (важная часть клетки)

Округлое или овальное

Обеспечивает передачу наследственных свойств дочерним клеткам при делении

Центральная часть клетки

Сферической или неправильной формы

Принимает участие в синтезе белка

Резервуар, отделённый от цитоплазмы мембраной. Содержит клеточный сок

Накапливаются запасные питательные вещества и продукты жизнедеятельности ненужные клетке.

По мере роста клетки мелкие вакуоли сливаются в одну большую (центральную) вакуоль

Пластиды

Хлоропласты

Используют световую энергию солнца и создают органические из неорганических

Форма дисков, отграниченных от цитоплазмы двойной мембраной

Хромопласты

Образуются в результате накопления каротиноидов

Жёлтые, оранжевые или бурые

Лейкопласты

Бесцветные пластиды

Ядерная оболочка

Состоит из двух мембран (наружная и внутренняя) с порами

Отграничивает ядро от цитоплазмы

Даёт возможность осуществляться обмену между ядром и цитоплазмой

Живая часть клетки — это ограниченная мембраной, упорядоченная, структурированная система биополимеров и внутренних мембранных структур, участвующих в совокупности метаболических и энергетических процессов, осуществляющих поддержание и воспроизведение всей системы в целом.

Важной особенностью является то, что в клетке нет открытых мембран со свободными концами. Клеточные мембраны всегда ограничивают полости или участки, закрывая их со всех сторон.

Современная обобщенная схема растительной клетки

Плазмалемма (наружная клеточная мембрана) — ультрамикроскопическая плёнка толщиной 7,5 нм., состоящая из белков, фосфолипидов и воды. Это очень эластичная плёнка, хорошо смачивающаяся водой и быстро восстанавливающая целостность после повреждения. Имеет универсальное строение, т.е.типичное для всех биологических мембран. У растительных клеток снаружи от клеточной мембраны находится прочная, создающая внешнюю опору и поддерживающая форму клетки клеточная стенка. Она состоит из клетчатки (целлюлозы) — нерастворимого в воде полисахарида.

Плазмодесмы растительной клетки, представляют собой субмикроскопические канальцы, пронизывающие оболочки и выстланные плазматической мембраной, которая таким образом переходит из одной клетки в другую, не прерываясь. С их помощью происходит межклеточная циркуляция растворов, содержащих органические питательные вещества. По ним же идёт передача биопотенциалов и другой информации.

Порами называют отверстия во вторичной оболочке, где клетки разделяют лишь первичная оболочка и срединная пластинка. Участки первичной оболочки и срединную пластинку, разделяющие соседствующие поры смежных клеток, называют поровой мембраной или замыкающей пленкой поры. Замыкающую пленку поры пронизывают плазмодесменные канальцы, но сквозного отверстия в порах обычно не образуется. Поры облегчают транспорт воды и растворенных веществ от клетки к клетке. В стенках соседних клеток, как правило, одна против другой, образуются поры.

Клеточная оболочка имеет хорошо выраженную, относительно толстую оболочку полисахаридной природы. Оболочка растительной клетки продукт деятельности цитоплазмы. В её образовании активное участие принимает аппарат Гольджи и эндоплазматическая сеть.

Строение клеточной мембраны

Основу цитоплазмы составляет ее матрикс, или гиалоплазма, — сложная бесцветная, оптически прозрачная коллоидная система, способная к обратимым переходам из золя в гель. Важнейшая роль гиалоплазмы заключается в объединении всех клеточных структур в единую систему и обеспечении взаимодействия между ними в процессах клеточного метаболизма.

Гиалоплазма (или матрикс цитоплазмы) составляет внутреннюю среду клетки. Состоит из воды и различных биополимеров (белков, нуклеиновых кислот, полисахаридов, липидов), из которых основную часть составляют белки различной химической и функциональной специфичности. В гиалоплазме содержатся также аминокислоты, моносахара, нуклеотиды и другие низкомолекулярные вещества.

Биополимеры образуют с водой коллоидную среду, которая в зависимости от условий может быть плотной (в форме геля) или более жидкой (в форме золя), как во всей цитоплазме, так и в отдельных ее участках. В гиалоплазме локализуются и взаимодействуют между собой и средой гиалоплазмы различные органеллы и включения. При этом расположение их чаще всего специфично для определенных типов клеток. Через билипидную мембрану гиалоплазма взаимодействует с внеклеточной средой. Следовательно, гиалоплазма является динамической средой и играет важную роль в функционировании отдельных органелл и жизнедеятельности клеток в целом.

Цитоплазматические образования – органеллы

Органеллы (органоиды) — структурные компоненты цитоплазмы. Они имеют определённую форму и размеры, являются обязательными цитоплазматическими структурами клетки. При их отсутствии или повреждении клетка обычно теряет способность к дальнейшему существованию. Многие из органоидов способны к делению и самовоспроизведению. Размеры их настолько малы, что их можно видеть только в электронный микроскоп.

Ядро

Ядро — самая заметная и обычно самая крупная органелла клетки. Оно впервые было подробно исследовано Робертом Броуном в 1831 году. Ядро обеспечивает важнейшие метаболические и генетические функции клетки. По форме оно достаточно изменчиво: может быть шаровидным, овальным, лопастным, линзовидным.

Ядро играет значительную роль в жизни клетки. Клетка, из которой удалили ядро, не выделяет более оболочку, перестаёт расти и синтезировать вещества. В ней усиливаются продукты распада и разрушения, вследствие этого она быстро погибает. Образование нового ядра из цитоплазмы не происходит. Новые ядра образуются только делением или дроблением старого.

Внутреннее содержимое ядра составляет кариолимфа (ядерный сок), заполняющая пространство между структурами ядра. В нём находится одно или несколько ядрышек, а также значительное количество молекул ДНК, соединённых со специфическими белками — гистонами.

Строение ядра

Ядрышко

Ядрышко — как и цитоплазма, содержит преимущественно РНК и специфические белки. Важнейшая его функция заключается в том, что в нём происходит формирование рибосом, которые осуществляют синтез белков в клетке.

Аппарат Гольджи

Аппарат Гольджи — органоид, имеющий универсальное распространение во всех разновидностях эукариотических клеток. Представляет собой многоярусную систему плоских мембранных мешочков, которые по периферии утолщаются и образуют пузырчатые отростки. Он чаще всего расположен вблизи ядра.

Аппарат Гольджи

В состав аппарата Гольджи обязательно входит система мелких пузырьков (везикул), которые отшнуровываются от утолщённых цистерн (диски) и располагаются по периферии этой структуры. Эти пузырьки играют роль внутриклеточной транспортной системы специфических секторных гранул, могут служить источником клеточных лизосом.

Функции аппарата Гольджи состоят также в накоплении, сепарации и выделении за пределы клетки с помощью пузырьков продуктов внутриклеточного синтеза, продуктов распада, токсических веществ. Продукты синтетической деятельности клетки, а также различные вещества, поступающие в клетку из окружающей среды по каналам эндоплазматической сети, транспортируются к аппарату Гольджи, накапливаются в этом органоиде, а затем в виде капелек или зёрен поступают в цитоплазму и либо используются самой клеткой, либо выводятся наружу. В растительных клетках Аппарат Гольджи содержит ферменты синтеза полисахаридов и сам полисахаридный материал, который используется для построения клеточной оболочки. Предполагают, что он участвует в образовании вакуолей. Аппарат Гольджи был назван так в честь итальянского учёного Камилло Гольджи, впервые обнаружившего его в 1897 году.

Лизосомы

Лизосомы представляют собой мелкие пузырьки, ограниченные мембраной основная функция которых — осуществление внутриклеточного пищеварения. Использование лизосомного аппарата происходит при прорастании семени растения (гидролиз запасных питательных веществ).

Строение лизосомы

Микротрубочки

Микротрубочки — мембранные, надмолекулярные структуры, состоящие из белковых глобул, расположенных спиральными или прямолинейными рядами. Микротрубочки выполняют преимущественно механическую (двигательную) функцию, обеспечивая подвижность и сокращаемость органоидов клетки. Располагаясь в цитоплазме, они придают клетке определённую форму и обеспечивают стабильность пространственного расположения органоидов. Микротрубочки способствуют перемещению органоидов в места, которые определяются физиологическими потребностями клетки. Значительное количество этих структур расположено в плазмалемме, вблизи клеточной оболочки, где они участвуют в формировании и ориентации целлюлозных микрофибрилл оболочек растительных клеток.

Строение микротрубочки

Вакуоль

Вакуоль — важнейшая составная часть растительных клеток. Она представляет собой своеобразную полость (резервуар) в массе цитоплазмы, заполненную водным раствором минеральных солей, аминокислот, органических кислот, пигментов, углеводов и отделённую от цитоплазмы вакуолярной мембраной — тонопластом.

Цитоплазма заполняет всю внутреннюю полость только у самых молодых растительных клеток. С ростом клетки существенно изменяется пространственное расположение вначале сплошной массы цитоплазмы: у неё появляются заполненные клеточным соком небольшие вакуоли, и вся масса становится ноздреватой. При дальнейшем росте клетки отдельные вакуоли сливаются, оттесняя к периферии прослойки цитоплазмы, в результате чего в сформированной клетке находится обычно одна большая вакуоль, а цитоплазма со всеми органеллами располагаются около оболочки.

Водорастворимые органические и минеральные соединения вакуолей обусловливают соответствующие осмотические свойства живых клеток. Этот раствор определённой концентрации является своеобразным осмотическим насосом для регулируемого проникновения в клетку и выделения из неё воды, ионов и молекул метаболитов.

В комплексе со слоем цитоплазмы и её мембранами, характеризующимися свойствами полупроницаемости, вакуоль образует эффективную осмотическую систему. Осмотически обусловленными являются такие показатели живых растительных клеток, как осмотический потенциал, сосущая сила и тургорное давление.

Строение вакуоли

Пластиды

Пластиды — самые крупные (после ядра) цитоплазматические органоиды, присущие только клеткам растительных организмов. Они не найдены только у грибов. Пластиды играют важную роль в обмене веществ. Они отделены от цитоплазмы двойной мембранной оболочкой, а некоторые их типы имеют хорошо развитую и упорядоченную систему внутренних мембран. Все пластиды едины по происхождению.

Хлоропласты — наиболее распространённые и наиболее функционально важные пластиды фотоавтотрофных организмов, которые осуществляют фотосинтетические процессы, приводящие в конечном итоге к образованию органических веществ и выделению свободного кислорода. Хлоропласты высших растений имеют сложное внутреннее строение.

Строение хлоропласта

Размеры хлоропластов у разных растений неодинаковы, но в среднем диаметр их составляет 4-6 мкм. Хлоропласты способны передвигаться под влиянием движения цитоплазмы. Кроме того, под воздействием освещения наблюдается активное передвижение хлоропластов амебовидного типа к источнику света.

Хлорофилл — основное вещество хлоропластов. Благодаря хлорофиллу зелёные растения способны использовать световую энергию.

Лейкопласты (бесцветные пластиды) представляют собой чётко обозначенные тельца цитоплазмы. Размеры их несколько меньше, чем размеры хлоропластов. Более и однообразна и их форма, приближающая к сферической.

Строение лейкопласта

Встречаются в клетках эпидермиса, клубнях, корневищах. При освещении очень быстро превращаются в хлоропласты с соответствующим изменением внутренней структуры. Лейкопласты содержат ферменты, с помощью которых из излишков глюкозы, образованной в процессе фотосинтеза, в них синтезируется крахмал, основная масса которого откладывается в запасающих тканях или органах (клубнях, корневищах, семенах) в виде крахмальных зёрен. У некоторых растений в лейкопластах откладываются жиры. Резервная функция лейкопластов изредка проявляется в образовании запасных белков в форме кристаллов или аморфных включений.

Хромопласты в большинстве случаев являются производными хлоропластов, изредка — лейкопластов.

Строение хромопласта

Созревание плодов шиповника, перца, помидоров сопровождается превращением хлоро- или лейкопластов клеток мякоти в каратиноидопласты. Последние содержат преимущественно жёлтые пластидные пигменты — каратиноиды, которые при созревании интенсивно синтезируются в них, образуя окрашенные липидные капли, твёрдые глобулы или кристаллы. Хлорофилл при этом разрушается.

Митохондрии

Митохондрии — органеллы, характерные для большинства клеток растений. Имеют изменчивую форму палочек, зёрнышек, нитей. Открыты в 1894 году Р. Альтманом с помощью светового микроскопа, а внутреннее строение было изучено позднее с помощью электронного.

Строение митохондрии

Митохондрии имеют двухмембранное строение. Внешняя мембрана гладкая, внутренняя образует различной формы выросты — трубочки в растительных клетках. Пространство внутри митохондрии заполнено полужидким содержимым (матриксом), куда входят ферменты, белки, липиды, соли кальция и магния, витамины, а также РНК, ДНК и рибосомы. Ферментативный комплекс митохондрий ускоряет работу сложного и взаимосвязанного механизма биохимических реакций, в результате которых образуется АТФ. В этих органеллах осуществляется обеспечение клеток энергией — преобразование энергии химических связей питательных веществ в макроэргиеские связи АТФ в процессе клеточного дыхания. Именно в митохондриях происходит ферментативное расщепление углеводов, жирных кислот, аминокислот с освобождением энергии и последующим превращением её в энергию АТФ. Накопленная энергия расходуется на ростовые процессы, на новые синтезы и т. д. Митохондрии размножаются делением и живут около 10 дней, после чего подвергаются разрушению.

Эндоплазматическая сеть

Эндоплазматическая сеть — сеть каналов, трубочек, пузырьков, цистерн, расположенных внутри цитоплазмы. Открыта в 1945 году английским учёным К. Портером, представляет собой систему мембран, имеющих ультрамикроскопическое строение.

Строение эндоплазматической сети

Вся сеть объединена в единое целое с наружной клеточной мембраной ядерной оболочки. Различают ЭПС гладкую и шероховатую, несущую на себе рибосомы. На мембранах гладкой ЭПС находятся ферментные системы, участвующие в жировом и углеводном обмене. Этот тип мембран преобладает в клетках семян, богатых запасными веществами (белками, углеводами, маслами), рибосомы прикрепляются к мембране гранулярной ЭПС, и во время синтеза белковой молекулы полипептидная цепочка с рибосомами погружается в канал ЭПС. Функции эндоплазматической сети очень разнообразны: транспорт веществ как внутри клетки, так и между соседними клетками; разделение клетки на отдельные секции, в которых одновременно проходят различные физиологические процессы и химические реакции.

Рибосомы

Рибосомы — немембранные клеточные органоиды. Каждая рибосома состоит из двух не одинаковых по размеру частичек и может делиться на два фрагмента, которые продолжают сохранять способность синтезировать белок после объединения в целую рибосому.

Строение рибосомы

Рибосомы синтезируются в ядре, затем покидают его, переходя в цитоплазму, где прикрепляются к наружной поверхности мембран эндоплазматической сети или располагаются свободно. В зависимости от типа синтезируемого белка рибосомы могут функционировать по одиночке или объединяться в комплексы — полирибосомы.