Действия со степенями с рациональными показателями примеры. Степень числа: определения, обозначение, примеры

МБОУ «Сидорская

общеобразовательная школа»

Разработка плана-конспекта открытого урока

по алгебре в 11 классе на тему:

Подготовила и провела

учитель по математике

Исхакова Е.Ф.

План-конспект открытого урока по алгебре в 11 классе.

Тема : «Степень с рациональным показателем».

Тип урока : Изучение нового материала

Цели урока :

    Познакомить учащихся с понятием степени с рациональным показателем и её основными свойствами, на основе ранее изученного материала (степень с целым показателем).

    Развивать вычислительные навыки и умения преобразовывать и сравнивать числа с рациональным показателем степени.

    Воспитывать математическую грамотность и математический интерес у учащихся.

Оборудование : Карточки-задания, презентация ученицы по степени с целым показателем, презентация учителя по степени с рациональным показателем, ноутбук, мультимедийный проектор, экран.

Ход урока:

    Организационный момент.

Проверка усвоения пройденной темы по индивидуальным карточкам-заданиям.

Задание №1.

=2;

Б) =х + 5;

Решите систему иррациональных уравнений: - 3 = -10,

4 - 5 =6.

Задание №2.

Решите иррациональное уравнение: = - 3;

Б) = х - 2;

Решите систему иррациональных уравнений: 2 + = 8,

3 - 2 = - 2.

    Сообщение темы и целей урока.

Тема нашего сегодняшнего урока «Степень с рациональным показателем ».

    Объяснение нового материала на примере изученного ранее.

Вам уже знакомо понятие степени с целым показателем. Кто мне поможет их вспомнить?

Повторение с помощью презентации «Степень с целым показателем ».

Для любых чисел a , b и любых целых чисел m и n справедливы равенства:

a m * a n =a m+n ;

a m: a n =a m-n (a ≠ 0);

(a m) n = a mn ;

(a b) n =a n * b n ;

(a/b) n = a n /b n (b ≠ 0) ;

a 1 =a ; a 0 = 1(a ≠ 0)

Сегодня мы обобщим понятие степени числа и придадим смысл выражениям, имеющим дробный показатель степени. Введём определение степени с рациональным показателем (Презентация «Степень с рациональным показателем»):

Степенью числа а > 0 с рациональным показателем r = , где m – целое число, а n – натуральное ( n > 1), называется число m .

Итак, по определению получаем, что = m .

Давайте попробуем применить это определение при выполнении задания.

ПРИМЕР №1

I Представьте в виде корня из числа выражение:

А) Б) В) .

А теперь давайте попробуем применить это определение наоборот

II Представьте выражение в виде степени с рациональным показателем:

А) 2 Б) В) 5 .

Степень числа 0 определена только для положительных показателей.

0 r = 0 для любого r > 0.

Используя данное определение, дома вы выполните №428 и №429.

Покажем теперь, что при сформулированном выше определении степени с рациональным показателем сохраняются основные свойства степеней, верные для любых показателей.

Для любых рациональных чисел r и s и любых положительных a и b справедливы равенства:

1 0 . a r a s =a r+s ;

ПРИМЕР : *

2 0 . a r: a s =a r-s ;

ПРИМЕР: :

3 0 . (a r ) s =a rs ;

ПРИМЕР: ( -2/3

4 0 . ( ab ) r = a r b r ; 5 0 . ( = .

ПРИМЕР: (25 4) 1/2 ; ( ) 1/2

ПРИМЕР на применение сразу нескольких свойств: * : .

    Физкультминутка.

Положили авторучки на парту, спинки выпрямили, а теперь тянемся вперёд, хотим дотронуться до доски. А теперь подняли и наклоняемся вправо, влево, вперёд, назад. Ручки мне показали, а теперь покажите как умеют танцевать ваши пальчики.

    Работа над материалом

Отметим ещё два свойства степеней с рациональными показателями:

6 0 . Пусть r – рациональное число и 0 < a < b . Тогда

a r < b r при r > 0,

a r < b r при r < 0.

7 0 . Для любых рациональных чисел r и s из неравенства r > s следует, что

a r > а r при а > 1,

a r < а r при 0 < а < 1.

ПРИМЕР: Сравните числа:

И ; 2 300 и 3 200 .

    Итоги урока:

Сегодня на уроке мы вспомнили свойства степени с целым показателем, узнали определение и основные свойства степени с рациональным показателем, рассмотрели применение этого теоретического материала на практике при выполнении упражнений. Хочу обратить ваше внимание на то, что тема «Степень с рациональным показателем» является обязательной в заданиях ЕГЭ. При подготовке домашнего задания (№428 и №429


После того как определена степень числа , логично поговорить про свойства степени . В этой статье мы дадим основные свойства степени числа, при этом затронем все возможные показатели степени. Здесь же мы приведем доказательства всех свойств степени, а также покажем, как применяются эти свойства при решении примеров.

Навигация по странице.

Свойства степеней с натуральными показателями

По определению степени с натуральным показателем степень a n представляет собой произведение n множителей, каждый из которых равен a . Отталкиваясь от этого определения, а также используя свойства умножения действительных чисел , можно получить и обосновать следующие свойства степени с натуральным показателем :

  1. основное свойство степени a m ·a n =a m+n , его обобщение ;
  2. свойство частного степеней с одинаковыми основаниями a m:a n =a m−n ;
  3. свойство степени произведения (a·b) n =a n ·b n , его расширение ;
  4. свойство частного в натуральной степени (a:b) n =a n:b n ;
  5. возведение степени в степень (a m) n =a m·n , его обобщение (((a n 1) n 2) …) n k =a n 1 ·n 2 ·…·n k ;
  6. сравнение степени с нулем:
    • если a>0 , то a n >0 для любого натурального n ;
    • если a=0 , то a n =0 ;
    • если a<0 и показатель степени является четным числом 2·m , то a 2·m >0 , если a<0 и показатель степени есть нечетное число 2·m−1 , то a 2·m−1 <0 ;
  7. если a и b – положительные числа и a
  8. если m и n такие натуральные числа, что m>n , то при 00 справедливо неравенство a m >a n .

Сразу заметим, что все записанные равенства являются тождественными при соблюдении указанных условий, и их правые и левые части можно поменять местами. Например, основное свойство дроби a m ·a n =a m+n при упрощении выражений часто применяется в виде a m+n =a m ·a n .

Теперь рассмотрим каждое из них подробно.

    Начнем со свойства произведения двух степеней с одинаковыми основаниями, которое называют основным свойством степени : для любого действительного числа a и любых натуральных чисел m и n справедливо равенство a m ·a n =a m+n .

    Докажем основное свойство степени. По определению степени с натуральным показателем произведение степеней с одинаковыми основаниями вида a m ·a n можно записать как произведение . В силу свойств умножения полученное выражение можно записать как , а это произведение есть степень числа a с натуральным показателем m+n , то есть, a m+n . На этом доказательство завершено.

    Приведем пример, подтверждающий основное свойство степени. Возьмем степени с одинаковыми основаниями 2 и натуральными степенями 2 и 3 , по основному свойству степени можно записать равенство 2 2 ·2 3 =2 2+3 =2 5 . Проверим его справедливость, для чего вычислим значения выражений 2 2 ·2 3 и 2 5 . Выполняя возведение в степень , имеем 2 2 ·2 3 =(2·2)·(2·2·2)=4·8=32 и 2 5 =2·2·2·2·2=32 , так как получаются равные значения, то равенство 2 2 ·2 3 =2 5 - верное, и оно подтверждает основное свойство степени.

    Основное свойство степени на базе свойств умножения можно обобщить на произведение трех и большего числа степеней с одинаковыми основаниями и натуральными показателями. Так для любого количества k натуральных чисел n 1 , n 2 , …, n k справедливо равенство a n 1 ·a n 2 ·…·a n k =a n 1 +n 2 +…+n k .

    Например, (2,1) 3 ·(2,1) 3 ·(2,1) 4 ·(2,1) 7 = (2,1) 3+3+4+7 =(2,1) 17 .

    Можно переходить к следующему свойству степеней с натуральным показателем – свойству частного степеней с одинаковыми основаниями : для любого отличного от нуля действительного числа a и произвольных натуральных чисел m и n , удовлетворяющих условию m>n , справедливо равенство a m:a n =a m−n .

    Прежде чем привести доказательство этого свойства, обговорим смысл дополнительных условий в формулировке. Условие a≠0 необходимо для того, чтобы избежать деления на нуль, так как 0 n =0 , а при знакомстве с делением мы условились, что на нуль делить нельзя. Условие m>n вводится для того, чтобы мы не выходили за рамки натуральных показателей степени. Действительно, при m>n показатель степени a m−n является натуральным числом, в противном случае он будет либо нулем (что происходит при m−n ), либо отрицательным числом (что происходит при m

    Доказательство. Основное свойство дроби позволяет записать равенство a m−n ·a n =a (m−n)+n =a m . Из полученного равенства a m−n ·a n =a m и из следует, что a m−n является частным степеней a m и a n . Этим доказано свойство частного степеней с одинаковыми основаниями.

    Приведем пример. Возьмем две степени с одинаковыми основаниями π и натуральными показателями 5 и 2 , рассмотренному свойству степени отвечает равенство π 5:π 2 =π 5−3 =π 3 .

    Теперь рассмотрим свойство степени произведения : натуральная степень n произведения двух любых действительных чисел a и b равна произведению степеней a n и b n , то есть, (a·b) n =a n ·b n .

    Действительно, по определению степени с натуральным показателем имеем . Последнее произведение на основании свойств умножения можно переписать как , что равно a n ·b n .

    Приведем пример: .

    Данное свойство распространяется на степень произведения трех и большего количества множителей. То есть, свойство натуральной степени n произведения k множителей записывается как (a 1 ·a 2 ·…·a k) n =a 1 n ·a 2 n ·…·a k n .

    Для наглядности покажем это свойство на примере. Для произведения трех множителей в степени 7 имеем .

    Следующее свойство представляет собой свойство частного в натуральной степени : частное действительных чисел a и b , b≠0 в натуральной степени n равно частному степеней a n и b n , то есть, (a:b) n =a n:b n .

    Доказательство можно провести, используя предыдущее свойство. Так (a:b) n ·b n =((a:b)·b) n =a n , а из равенства (a:b) n ·b n =a n следует, что (a:b) n является частным от деления a n на b n .

    Запишем это свойство на примере конкретных чисел: .

    Теперь озвучим свойство возведения степени в степень : для любого действительного числа a и любых натуральных чисел m и n степень a m в степени n равна степени числа a с показателем m·n , то есть, (a m) n =a m·n .

    Например, (5 2) 3 =5 2·3 =5 6 .

    Доказательством свойства степени в степени является следующая цепочка равенств: .

    Рассмотренное свойство можно распространить на степень в степени в степени и т.д. Например, для любых натуральных чисел p , q , r и s справедливо равенство . Для большей ясности приведем пример с конкретными числами: (((5,2) 3) 2) 5 =(5,2) 3+2+5 =(5,2) 10 .

    Осталось остановиться на свойствах сравнения степеней с натуральным показателем.

    Начнем с доказательства свойства сравнения нуля и степени с натуральным показателем.

    Для начала обоснуем, что a n >0 при любом a>0 .

    Произведение двух положительных чисел является положительным числом, что следует из определения умножения. Этот факт и свойства умножения позволяют утверждать, что результат умножения любого числа положительных чисел также будет положительным числом. А степень числа a с натуральным показателем n по определению является произведением n множителей, каждый из которых равен a . Эти рассуждения позволяют утверждать, что для любого положительного основания a степень a n есть положительное число. В силу доказанного свойства 3 5 >0 , (0,00201) 2 >0 и .

    Достаточно очевидно, что для любого натурального n при a=0 степень a n есть нуль. Действительно, 0 n =0·0·…·0=0 . К примеру, 0 3 =0 и 0 762 =0 .

    Переходим к отрицательным основаниям степени.

    Начнем со случая, когда показатель степени является четным числом, обозначим его как 2·m , где m - натуральное. Тогда . По каждое из произведений вида a·a равно произведению модулей чисел a и a , значит, является положительным числом. Следовательно, положительным будет и произведение и степень a 2·m . Приведем примеры: (−6) 4 >0 , (−2,2) 12 >0 и .

    Наконец, когда основание степени a является отрицательным числом, а показатель степени есть нечетное число 2·m−1 , то . Все произведения a·a являются положительными числами, произведение этих положительных чисел также положительно, а его умножение на оставшееся отрицательное число a дает в итоге отрицательное число. В силу этого свойства (−5) 3 <0 , (−0,003) 17 <0 и .

    Переходим к свойству сравнения степеней с одинаковыми натуральными показателями, которое имеет следующую формулировку: из двух степеней с одинаковыми натуральными показателями n меньше та, основание которой меньше, а больше та, основание которой больше. Докажем его.

    Неравенство a n свойств неравенств справедливо и доказываемое неравенство вида a n (2,2) 7 и .

    Осталось доказать последнее из перечисленных свойств степеней с натуральными показателями. Сформулируем его. Из двух степеней с натуральными показателями и одинаковыми положительными основаниями, меньшими единицы, больше та степень, показатель которой меньше; а из двух степеней с натуральными показателями и одинаковыми основаниями, большими единицы, больше та степень, показатель которой больше. Переходим к доказательству этого свойства.

    Докажем, что при m>n и 00 в силу исходного условия m>n , откуда следует, что при 0

    Осталось доказать вторую часть свойства. Докажем, что при m>n и a>1 справедливо a m >a n . Разность a m −a n после вынесения a n за скобки принимает вид a n ·(a m−n −1) . Это произведение положительно, так как при a>1 степень a n есть положительное число, и разность a m−n −1 есть положительное число, так как m−n>0 в силу начального условия, и при a>1 степень a m−n больше единицы. Следовательно, a m −a n >0 и a m >a n , что и требовалось доказать. Иллюстрацией этого свойства служит неравенство 3 7 >3 2 .

Свойства степеней с целыми показателями

Так как целые положительные числа есть натуральные числа, то все свойства степеней с целыми положительными показателями в точности совпадают со свойствами степеней с натуральными показателями, перечисленными и доказанными в предыдущем пункте.

Степень с целым отрицательным показателем , а также степень с нулевым показателем мы определяли так, чтобы оставались справедливыми все свойства степеней с натуральными показателями, выражаемые равенствами. Поэтому, все эти свойства справедливы и для нулевых показателей степени, и для отрицательных показателей, при этом, конечно, основания степеней отличны от нуля.

Итак, для любых действительных и отличных от нуля чисел a и b , а также любых целых чисел m и n справедливы следующие свойства степеней с целыми показателями :

  1. a m ·a n =a m+n ;
  2. a m:a n =a m−n ;
  3. (a·b) n =a n ·b n ;
  4. (a:b) n =a n:b n ;
  5. (a m) n =a m·n ;
  6. если n – целое положительное число, a и b – положительные числа, причем ab −n ;
  7. если m и n – целые числа, причем m>n , то при 01 выполняется неравенство a m >a n .

При a=0 степени a m и a n имеют смысл лишь когда и m , и n положительные целые числа, то есть, натуральные числа. Таким образом, только что записанные свойства также справедливы для случаев, когда a=0 , а числа m и n – целые положительные.

Доказать каждое из этих свойств не составляет труда, для этого достаточно использовать определения степени с натуральным и целым показателем, а также свойства действий с действительными числами. Для примера докажем, что свойство степени в степени выполняется как для целых положительных чисел, так и для целых неположительных чисел. Для этого нужно показать, что если p есть нуль или натуральное число и q есть нуль или натуральное число, то справедливы равенства (a p) q =a p·q , (a −p) q =a (−p)·q , (a p) −q =a p·(−q) и (a −p) −q =a (−p)·(−q) . Сделаем это.

Для положительных p и q равенство (a p) q =a p·q доказано в предыдущем пункте. Если p=0 , то имеем (a 0) q =1 q =1 и a 0·q =a 0 =1 , откуда (a 0) q =a 0·q . Аналогично, если q=0 , то (a p) 0 =1 и a p·0 =a 0 =1 , откуда (a p) 0 =a p·0 . Если же и p=0 и q=0 , то (a 0) 0 =1 0 =1 и a 0·0 =a 0 =1 , откуда (a 0) 0 =a 0·0 .

Теперь докажем, что (a −p) q =a (−p)·q . По определению степени с целым отрицательным показателем , тогда . По свойству частного в степени имеем . Так как 1 p =1·1·…·1=1 и , то . Последнее выражение по определению является степенью вида a −(p·q) , которую в силу правил умножения можно записать как a (−p)·q .

Аналогично .

И .

По такому же принципу можно доказать все остальные свойства степени с целым показателем, записанные в виде равенств.

В предпоследнем из записанных свойств стоит остановиться на доказательстве неравенства a −n >b −n , которое справедливо для любого целого отрицательного −n и любых положительных a и b , для которых выполняется условие a. Так как по условию a0 . Произведение a n ·b n тоже положительно как произведение положительных чисел a n и b n . Тогда полученная дробь положительна как частное положительных чисел b n −a n и a n ·b n . Следовательно, откуда a −n >b −n , что и требовалось доказать.

Последнее свойство степеней с целыми показателями доказывается так же, как аналогичное свойство степеней с натуральными показателями.

Свойства степеней с рациональными показателями

Степень с дробным показателем мы определяли, распространяя на нее свойства степени с целым показателем. Иными словами, степени с дробными показателями обладают теми же свойствами, что и степени с целыми показателями. А именно:

Доказательство свойств степеней с дробными показателями базируется на определении степени с дробным показателем, на и на свойствах степени с целым показателем. Приведем доказательства.

По определению степени с дробным показателем и , тогда . Свойства арифметического корня позволяют нам записать следующие равенства . Дальше, используя свойство степени с целым показателем, получаем , откуда по определению степени с дробным показателем имеем , а показатель полученной степени можно преобразовать так: . На этом доказательство завершено.

Абсолютно аналогично доказывается второе свойство степеней с дробными показателями:

По схожим принципам доказываются и остальные равенства:

Переходим к доказательству следующего свойства. Докажем, что для любых положительных a и b , a b p . Запишем рациональное число p как m/n , где m – целое число, а n – натуральное. Условиям p<0 и p>0 в этом случае будут эквивалентны условия m<0 и m>0 соответственно. При m>0 и a

Аналогично, при m<0 имеем a m >b m , откуда , то есть, и a p >b p .

Осталось доказать последнее из перечисленных свойств. Докажем, что для рациональных чисел p и q , p>q при 00 – неравенство a p >a q . Мы всегда можем привести к общему знаменателю рациональные числа p и q , пусть при этом мы получим обыкновенные дроби и , где m 1 и m 2 – целые числа, а n - натуральное. При этом условию p>q будет соответствовать условие m 1 >m 2 , что следует из . Тогда по свойству сравнения степеней с одинаковыми основаниями и натуральными показателями при 01 – неравенство a m 1 >a m 2 . Эти неравенства по свойствам корней можно переписать соответственно как и . А определение степени с рациональным показателем позволяет перейти к неравенствам и соответственно. Отсюда делаем окончательный вывод: при p>q и 00 – неравенство a p >a q .

Свойства степеней с иррациональными показателями

Из того, как определяется степень с иррациональным показателем , можно заключить, что она обладает всеми свойствами степеней с рациональными показателями. Так для любых a>0 , b>0 и иррациональных чисел p и q справедливы следующие свойства степеней с иррациональными показателями :

  1. a p ·a q =a p+q ;
  2. a p:a q =a p−q ;
  3. (a·b) p =a p ·b p ;
  4. (a:b) p =a p:b p ;
  5. (a p) q =a p·q ;
  6. для любых положительных чисел a и b , a0 справедливо неравенство a p b p ;
  7. для иррациональных чисел p и q , p>q при 00 – неравенство a p >a q .

Отсюда можно сделать вывод, что степени с любыми действительными показателями p и q при a>0 обладают этими же свойствами.

Список литературы.

  • Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И. МатематикаЖ учебник для 5 кл. общеобразовательных учреждений.
  • Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И., Суворова С.Б. Алгебра: учебник для 7 кл. общеобразовательных учреждений.
  • Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И., Суворова С.Б. Алгебра: учебник для 8 кл. общеобразовательных учреждений.
  • Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И., Суворова С.Б. Алгебра: учебник для 9 кл. общеобразовательных учреждений.
  • Колмогоров А.Н., Абрамов А.М., Дудницын Ю.П. и др. Алгебра и начала анализа: Учебник для 10 - 11 классов общеобразовательных учреждений.
  • Гусев В.А., Мордкович А.Г. Математика (пособие для поступающих в техникумы).

От целых показателей степени числа a напрашивается переход к рациональным показателем. Ниже мы определим степень с рациональным показателем, причем будем это делать так, чтобы сохранялись все свойства степени с целым показателем. Это необходимо, так как целые числа являются частью рациональных чисел.

Известно, что множество рациональных чисел состоит из целых и дробных чисел, причем каждое дробное число может быть представлено в виде положительной или отрицательной обыкновенной дроби. Степень с целым показателем мы определили в предыдущем пункте, поэтому, чтобы закончить определение степени с рациональным показателем, нужно придать смысл степени числа a с дробным показателем m/n , гдеm – целое число, а n - натуральное. Сделаем это.

Рассмотрим степень с дробным показателем вида . Чтобы сохраняло силу свойство степени в степени, должно выполняться равенство . Если учесть полученное равенство и то, как мы определили корень n-ой степени, то логично принять при условии, что при данных m , n и a выражение имеет смысл.

Несложно проверить, что при справедливы все свойства степени с целым показателем (это сделано в разделе свойства степени с рациональным показателем).

Приведенные рассуждения позволяют сделать следующий вывод : если при данныхm , n и a выражение имеет смысл, то степенью числа a с дробным показателемm/n называют корень n -ой степени из a в степени m .

Это утверждение вплотную подводит нас к определению степени с дробным показателем. Остается лишь расписать, при каких m , n и a имеет смысл выражение . В зависимости от ограничений, накладываемых на m , n и a существуют два основных подхода.

1. Проще всего наложить ограничение на a , приняв a≥0 для положительных m и a>0 для отрицательных m (так как при m≤0 степень 0 m не определена). Тогда мы получаем следующее определение степени с дробным показателем.

Определение.

Степенью положительного числа a с дробным показателем m/n , где m – целое, а n – натуральное число, называется корень n -ой из числа a в степени m , то есть, .



Также определяется дробная степень нуля с той лишь оговоркой, что показатель должен быть положительным.

Определение.

Степень нуля с дробным положительным показателем m/n , где m – целое положительное, а n – натуральное число, определяется как .
При степень не определяется, то есть, степень числа нуль с дробным отрицательным показателем не имеет смысла.

Следует отметить, что при таком определении степени с дробным показателем существует один нюанс: при некоторых отрицательных a и некоторых m и n выражение имеет смысл, а мы отбросили эти случаи, введя условиеa≥0 . Например, имеют смысл записи или , а данное выше определение заставляет нас говорить, что степени с дробным показателем вида не имеют смысла, так как основание не должно быть отрицательным.

2. Другой подход к определению степени с дробным показателем m/n заключается в раздельном рассмотрении четных и нечетных показателях корня . Этот подход требует дополнительного условия: степень числа a , показателем которой является сократимая обыкновенная дробь, считается степенью числа a , показателем которой является соответствующая несократимая дробь (важность этого условия поясним чуть ниже). То есть, если m/n – несократимая дробь, то для любого натурального числа k степень предварительно заменяется на .

При четных n и положительных m выражение имеет смысл при любом неотрицательном a (корень четной степени из отрицательного числа не имеет смысла), при отрицательных m число a должно быть еще отличным от нуля (иначе будет деление на нуль). А при нечетных n и положительных m число a может быть любым (корень нечетной степени определен для любого действительного числа), а при отрицательных m число a должно быть отличным от нуля (чтобы не было деления на нуль).

Приведенные рассуждения приводят нас к такому определению степени с дробным показателем.

Определение.

Пусть m/n – несократимая дробь, m – целое, а n – натуральное число. Для любой сократимой обыкновенной дроби степень заменяется на . Степень числа a с несократимым дробным показателем m/n - это для

o любого действительного числа a , целого положительного m и нечетного натурального n , например, ;

o любого отличного от нуля действительного числа a , целого отрицательного m и нечетного n , к примеру, ;

o любого неотрицательного числа a , целого положительного m и четного n , например, ;

o любого положительного a , целого отрицательного m и четного n , к примеру, ;

o в остальных случаях степень с дробным показателем не определяется, как например не определены степени .a записи мы не придаем никакого смысла, степень числа нуль мы определяем для положительных дробных показателей m/n как , для отрицательных дробных показателей степень числа нуль не определяем.

В заключение этого пункта обратим внимание на то, что дробный показатель степени может быть записан в виде десятичной дроби или смешанного числа, например, . Для вычисления значений выражений подобного вида нужно показатель степени записать в виде обыкновенной дроби, после чего воспользоваться определением степени с дробным показателем. Для указанных примеров имеем и

Выражение a n (степень с целым показателем) будет определено во всех случаях, за исключением случая, когда a = 0 и при этом n меньше либо равно нулю.

Свойства степеней

Основные свойства степеней с целым показателем:

a m *a n = a (m+n) ;

a m: a n = a (m-n) (при a не равном нулю);

(a m) n = a (m*n) ;

(a*b) n = a n *b n ;

(a/b) n = (a n)/(b n) (при b не равном нулю);

a 0 = 1 (при a не равном нулю);

Эти свойства будут справедливы для любых чисел a, b и любых целых чисел m и n. Стоит отметить также следующее свойство:

Если m>n, то a m > a n , при a>1 и a m

Можно обобщить понятие степени числа на случаи, когда в качестве показателя степени выступают рациональные числа. При этом хотелось бы, чтобы выполнялись все выше перечисленные свойства или хотя бы часть из них.

Например, при выполнении свойства (a m) n = a (m*n) выполнялось бы следующее равенство:

(a (m/n)) n = a m .

Это равенство означает, что число a (m/n) должно являться корнем n-ой степени из числа a m .

Степенью некоторого числа a (большего нуля) с рациональным показателем r = (m/n), где m - некоторое целое число, n - некоторое натурально число большее единицы, называется число n√(a m) . Исходя из определения: a (m/n) = n√(a m).

Для всех положительных r будет определена степень числа нуль. По определению 0 r = 0. Отметим также, что при любом целом, любых натуральных m и n, и положительном а верно следующее равенство: a (m/n) = a ((mk)/(nk)) .

Например: 134 (3/4) = 134 (6/8) = 134 (9/12) .

Из определения степени с рациональным показателем напрямую следует тот факт, что для любого положительного а и любого рационального r число a r будет положительным .

Основные свойства степени с рациональным показателем

Для любых рациональных чисел p, q и любых a>0 и b>0 верны следующие равенства:

1. (a p)*(a q) = a (p+q) ;

2. (a p):(b q) = a (p-q) ;

3. (a p) q = a (p*q) ;

4. (a*b) p = (a p)*(b p);

5. (a/b) p = (a p)/(b p).

Данные свойства вытекают из свойств корней. Все данные свойства доказываются аналогичным способом, поэтому ограничимся доказательством только одного из них, например, первого (a p)*(a q) = a (p + q) .

Пусть p = m/n, a q = k/l, где n, l - некоторые натуральные числа, а m, k - некоторые целые числа. Тогда нужно доказать, что:

(a (m/n))*(a (k/l)) = a ((m/n) + (k/l)) .

Сначала приведем дроби m/n k/l к общему знаменателю. Получим дроби (m*l)/(n*l) и (k*n)/(n*l). Перепишем левую часть равенства с помощью этих обозначений и получим:

(a (m/n))*(a (k/l)) = (a ((m*l)/(n*l)))*(a ((k*n)/(n*l))).

(a (m/n))*(a (k/l)) = (a ((m*l)/(n*l)))*(a ((k*n)/(n*l))) = (n*l)√(a (m*l))*(n*l)√(a (k*n)) = (n*l)√((a (m*l))*(a (k*n))) = (n*l)√(a (m*l+k*n)) = a ((m*l+k*n)/(n*l)) = a ((m/n)+(k/l)) .