Божественная пропорция - реферат. Божественная пропорция - реферат Загадочный мир пропорций

Класс: 6

Презентация к уроку















































Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Тип урока: урок обобщения

Оборудование: компьютер, интерактивная доска.

Цели урока:

Обучающие:

  • обобщение и систематизация знаний учащихся по данной теме;
  • усиление прикладной и практической направленности изученной темы;
  • установление внутрипредметных и межпредметных связей с другими темами курса математики, географии, физики, астрономии, биологии, химии.

Развивающие:

  • расширение кругозора учащихся,
  • пополнение словарного запаса;

Воспитательные:

  • воспитание интереса к предмету и смежным дисциплинам,
  • воспитывать чувство прекрасного, чувство патриотизма.

I. Организационный момент:

1) сообщение темы урока (слайд 1);

2) сообщение целей и задач урока.

II. Актуализация знаний по теме “Пропорции”:

  1. Что называют отношением двух чисел?
  2. Что показывает отношение двух чисел?
  3. Что такое пропорция?
  4. Как называются члены этой пропорции?
  5. Каким основным свойством обладают члены пропорции?
  6. Какие две величины называют прямо пропорциональными? (привести примеры прямо пропорциональных величин).
  7. Какие две величины называют обратно пропорциональными? (примеры).

III. Из истории пропорции. (слайды 2-5)

Слово “пропорция” происходит от латинского слова proportio , означающего соразмерность, определенное соотношение частей между собой. Пропорции используют с древности при решении разных задач в математике.

Ещё в древней Греции математики использовали такой аппарат, как ПРОПОРЦИЯ.

Пропорцией называют равенство отношений двух или нескольких пар чисел или величин.

В Вавилоне с помощью пропорций рисовали планы древних городов. На рисунке изображен найденный при раскопках план древнего вавилонского города Ниппура. Когда ученые сравнили результаты раскопок города с этим планом, оказалось, что он сделан с большой точностью.

IV. Практическое применение пропорций. (слайд 6-7)

Математика применяется практически во всех сферах жизни человека. И в повседневной жизни мы используем математические навыки, в том числе и пропорцию.

1. Архитектура (слайды 8-11)

При постройке храма в честь богини Дианы римляне взяли пропорцию, которой отличаются стройные женщины: толщина колоны составила лишь 1/8 ее высоты. Благодаря этому колонны казалась выше, чем она была на самом деле,как раз за счет уменьшения толщины. В архитектуру вошли оба вида колонн, сохраняющие одна мужскую, другая женскую пропорции в отношениях между основанием и высотой.

Золотое сечение – это такое пропорциональное деление отрезка на неравные части, при котором весь отрезок так относится к большей части, как сама большая часть относится к меньшей; или другими словами, меньший отрезок так относится к большему, как больший ко всему.

Принято считать, что понятие о золотом делении ввел в научный обиход Пифагор, древнегреческий философ и математик (VI в. до н.э.). Есть предположение, что Пифагор свое знание золотого деления позаимствовал у египтян и вавилонян. И действительно, пропорции пирамиды Хеопса, храмов, барельефов, предметов быта и украшений из гробницы Тутанхамонасвидетельствуют, что египетские мастера пользовались соотношениями золотого деления при их создании.

Решите задачи.

1. На строительство дома идет 4 тыс. штук кирпича. Сколько тысяч штук кирпича необходимо для строительства 15 таких же домов.

2. Для перевозки песка при строительстве потребовалось 14 автомашин грузоподъемностью 4,5 т. Сколько потребуется автомашин грузоподъемностью 7 т для перевозки этого же песка?

2. Кулинария (слайды 12-13)

Понятие пропорции используется в кулинарии. Когда мы готовим какое-либо блюдо, мы стараемся использовать то количество продуктов, которое указано в поварской книге. Это делается для того, чтобы не испортить блюдо. Если мы возьмём больше соли, то пересолим, а если меньше, то будет не вкусно. Ещё пропорция позволяет рассчитать количество продуктов для приготовления одного и того же блюда для разного числа гостей.

Решите задачи

3. Для приготовления варенья из 2 кг крыжовника необходимо 3 кг сахара. Сколько кг сахара необходимо для приготовления варенья из 4,4 кг крыжовника.

4. При сушке масса яблок изменилась с 20 кг до 18,2 кг. На сколько % уменьшилась масса яблок при сушке?

3. Медицина(слайды 14-16)

В медицинской практике врачи следят за тем, сколько и когда надо давать лекарства больному. В правильных дозах лекарство даёт лечебный эффект, в меньших – оно бесполезно, а в больших – приносит вред. При изготовлении лекарств тоже соблюдаются пропорции. Здесь необходима точность, так как при нарушении пропорций, составляющих лекарство ингредиентов, может получиться не лекарство, а яд.Отношения и пропорции используется также в аптеках при изготовлении лекарств и лечебных напитков. Чтобы изготовить лекарственный препарат надо точно знать, сколько частей приходится на какую-либо часть.

Решите задачи

5. Для лекарственного отвара ромашки на 100 г кипятка необходимо 20 г сухой ромашки. Сколько г ромашки необходимо для 500г отвара.

6. Больному прописан курс лекарства, которое нужно принимать по 250 мг два раза в день в течение 7 дней. В одной упаковке лекарства содержится 10 таблеток по 125 мг. Какое наименьшее количество упаковок понадобится на весь курс лечения.

4. Химия (слайды 17-19)

Заслуженное место заняла теория пропорций при решении задач по химии .

Например. Какова процентная концентрация раствора, полученного растворением 5 г поваренной соли в 45 г воды?

Решите задачи

7. В 2,4 л воды растворили 100 г соли. Какова концентрация полученного раствора?

8. Имеется 90 г 80% уксусной эссенции. Какое наибольшее количество 9% столового уксуса из нее можно получить?

5. Технология (слайды 20-23)

На уроках технологии мы также используем пропорцию. Когда мы хотим сшить какую-либо вещь меньшего или большего размера, мы уменьшаем или увеличиваем выкройку до нужного нам размера. Например, выкройка фартука на себя и на куклу. Размеры элементов кукольного фартука отличаются от соответствующих размеров моего фартука в одно и тоже число раз.

Решите задачи

9. Краеобметочная машина 0,6 м ткани обрабатывает за 2,16 мин. Сколько метров можно обметать за 1,44 мин?

10. На изготовление детского платья идет 1,2 м. Сколько необходимо ткани на платье для взрослых, если расход на него на 40 % больше.

6. Физика.(слайды 24-25)

С глубокой древности люди пользовались различными рычагами. Весло, лом, весы, ножницы, качели, тачка и т.д. – примеры рычагов. Выигрыш, который дает рычаг в прилагаемом усилии, определяется пропорцией, где M и m – массы грузов, а L и l – “плечи” рычага.

Решите задачи

11. По правилу рычаганайти М, если l=2 м, L=8 м, m=4 кг.

12. В городе Жуковском на авиа-шоу МАКС проходят показательные полёты самолётов. Такому самолёту-истребителю, как МИГ-29 на 3 часа полётов требуется около 7,5 тонн керосина. Сколько тонн керосина потребуется МИГ-29 на 7 часов полётов?

7. Моделирование.(слайды 26-27)

Решите задачи

13. Длина модели автомашины 42см.Какова длина автомобиля, если размеры его уменьшены в 10000 раз.

14. На модель парусника идет 60 см ткани. Сколько м ткани необходимо для изготовления трех таких же парусника.

8. География. (слайды 28-30)

В географии также применяют пропорцию – масштаб . Масштабом называют отношение длины отрезка на карте или плане к длине соответствующего отрезка на местности. Масштаб показывает во сколько раз расстояние на плане меньше, чем указанное расстояние на самом деле.

Решите задачи

15. Найдите расстояние от Москвы до Северного полюса, если на карте это расстояние – 3,5 см, а М 1:100000000.

16. Найти расстояние на карте между городами Ростов –на –Дону и Москвой, если расстояние между ними 1200 км, а М 1:50000000.

V. Сообщения учеников о применении пропорции.

9. Изобразительное искусство. (слайды 30-37)

10. Биология.(слайды 38-39)

11. Музыка.(слайды 40-41)

12. Литература.(слайды 42-44)

VI. Заключение.(слайд 45)

С глубокой древности люди используют математический аппарат в повседневной жизни. Одним из них является пропорция. Она используется, начиная с приготовления пищи и заканчивая произведениями искусства, такими как скульптура, живопись, архитектура, а также в живой природе.

VII. Домашнее задание.

Литература

  1. Из опыта проведения внеклассной работы по математике в средней школе. Сб. статей под ред. П.Стратилатова. – М.: Учпедгиз, 1955.
  2. Д.Пидоу. Геометрия и искусство. – М.: Мир, 1989.
  3. Журнал “Квант”, 1973, №8.
  4. Журнал “Математика в школе”, 1994, №2, №3.
  5. Г.Мишкевич “Доктор занимательных наук” – М.: Знание, 1986
  6. И.Агеева “Занимательные материалы по информатике и математике” –М.: Творческий центр, 2005.
  7. CD-ROM “От плуга до лазера 2.0”, Новый диск, 1998 г.
  8. Стандартный базовый пакет программного обеспечения общеобразовательных учреждений Первая помощь 1.0 Диск № 56 Электронные образовательные ресурсы нового поколения Диск 1/1 DVD
  9. http://www.sak.ru/reference/famous-buildings/famous-building5-1f.html Парфенон
  10. http://www.foxdesign.ru/legend/apollo1.html Апполон Бельведерский
  11. http://www.sunhome.ru/journal/184 Мона Лиза
  12. http://www.beseder.co.il/image-gallery/11897/1/1/ Леонардо да Винчи

В школе на уроках естественных наук: физики, химии, биологии, астрономии, географии и на уроках гуманитарных наук: истории, литературы, родного и иностранного языков мы изучаем природу и общество. На уроках музыки, рисования, черчения, гимнастики нас вводят в мир искусств. Кроме этих дисциплин, этих предметов, на протяжении всех школьных лет мы изучаем математику: арифметику, алгебру, геометрию, тригонометрию. К каким же наукам причислить эти дисциплины? Что составляет предмет их изучения? Многие учёные относят математику к естественным наукам, так как математика изучает окружающий нас мир: предметы и явления природы, общества и человеческого мышления. Физика, химия, биология изучают предметы и явления окружающего нас мира со стороны их качества. Математика изучает те же предметы, явления со стороны их количества, пространства и времени, говорят – со стороны их формы.

Поэтому математику учёные считают естественной наукой, изучающей наш материальный мир. Математика пронизывает все отрасли знания, в том числе и гуманитарные науки. Без математики сейчас не обходятся экономические, филологические и другие науки. Поэтому некоторые учёные считают математику прослойкой между естественными и гуманитарными науками.

Великий немецкий математик Карл Фридрих Гаусс в своё время назвал математику «царицей всех наук» и «царицей и слугой всех наук». Так её называют за благородное служение практически всем наукам.

В математике много методов, позволяющих решать те или иные задачи. Ещё в древней Греции математики использовали такой аппарат, как ПРОПОРЦИЯ.

Пропорцией называют равенство отношений двух или нескольких пар чисел или величин. Например, размеры модели машины или сооружения отличаются от размеров оригинала одним и тем же множителем, задающим масштаб модели. Поэтому, если выбрать на оригинале 4 точки А,В,С и Д и обозначить на через А1,В1,С1 и Д1 соответствующие точки на модели, то будет выполняться равенство ==. Такое равенство отношений и называют пропорцией. Она показывает, что отношение расстояний между точками на оригинале такое же, как отношение расстояний между соответствующими точками на модели.

В древности в неявной форме идеей пропорциональности пользовались при решении задач методом сложного положения: давали искомой величине значение, вычисляли, какое значение должна при этом иметь одна из данных величин, и сравнивали с условием задачи. Отношение величин давало коэффициент, на который надо умножить выбранное значение, чтобы получить правильный ответ.

Систематически пропорции начали изучать в Древней Греции. Сначала рассматривали лишь пропорции, составленные из натуральных чисел, и поэтому считали, что числа а, в, с, d образуют пропорцию, если а является тем же кратным, той же долей или той же дробью от в, что и с от d. В IV в. до н. э. древнегреческий математик Евдокс дал определение пропорции, составленной из величин любой природы. Древнегреческие математики решали задачи, которые в наши дни решают с помощью уравнений, а место алгебраических преобразований занял переход от одной пропорции к другой.

В современной математике применяют различные СВОЙСТВА ПРОПОРЦИЙ.

Основное свойство пропорции. Если a: b = c: d, то a∙d = b∙c

Обращение пропорции. Если a: b = c: d, то b: a = d: c

Перестановка средних и крайних членов. Если a: b = c: d, то a: c = b: d (перестановка средних членов пропорции), d: b = c: a (перестановка крайних членов пропорции).

Увеличение и уменьшение пропорции. Если a: b = c: d, то

(a + b) : b = (c + d) : d (увеличение пропорции),

(a – b) : b = (c – d) : d (уменьшение пропорции).

Составление пропорции сложением и вычитанием. Если a: b = c: d, то

(a + с) : (b + d) = a: b = c: d (составление пропорции сложением),

(a – с) : (b – d) = a: b = c: d (составление пропорции вычитанием)

Математика применяется практически во всех сферах жизни человека. И в повседневной жизни мы используем математические навыки, в том числе и пропорцию.

КУЛИНАРИЯ

Понятие пропорции используется в кулинарии. Когда мы готовим какое-либо блюдо, мы стараемся использовать то количество продуктов, которое указано в поварской книге. Это делается для того, чтобы не испортить блюдо. Если мы возьмём больше соли, то пересолим, а если меньше, то будет не вкусно. Ещё пропорция позволяет рассчитать количество продуктов для приготовления одного и того же блюда для разного числа гостей.

МЕДИЦИНА

В медицинской практике врачи следят за тем, сколько и когда надо давать лекарства больному. В правильных дозах лекарство даёт лечебный эффект, в меньших – оно бесполезно, а в больших – приносит вред. При изготовлении лекарств тоже соблюдаются пропорции. Здесь необходима точность, так как при нарушении пропорций, составляющих лекарство ингредиентов, может получиться не лекарство, а яд.

ТЕХНОЛОГИЯ

На уроках технологии мы также используем пропорцию. Когда мы хотим сшить какую-либо вещь меньшего или большего размера, мы уменьшаем или увеличиваем выкройку до нужного нам размера. Например, выкройка фартука на себя и на куклу. Размеры элементов кукольного фартука отличаются от соответствующих размеров моего фартука в одно и тоже число раз.

ГЕОГРАФИЯ

В географии также применяют пропорцию – масштаб. Масштабом называют отношение длины отрезка на карте или плане к длине соответствующего отрезка на местности. Масштаб показывает во сколько раз расстояние на плане меньше, чем указанное расстояние на самом деле.

Существуют разные виды масштаба: численный, линейный и именованный. Численный масштаб записывают в виде дроби, в числителе которой стоит единица, а в знаменателе - степень уменьшения проекции. Например, масштаб 1:5 000 показывает, что 1 см на плане соответствует 5 000 см (50 м) на местности. Более крупным является тот масштаб, у которого знаменатель меньше. Например, масштаб 1:1 000 крупнее, чем масштаб 1:25 000. По численному масштабу узнают, во сколько раз уменьшены на плане все расстояния. Чем больше число в знаменателе дроби, тем в большее число раз уменьшено настоящее расстояние, тем мельче карта.

Запись «в 1 см – 10 м» называют именованный масштабом, а расстояние на местности, соответствующее 1 см на плане, называют величиной масштаба. С помощью величины масштаба очень удобно определять расстояния.

На планах помещают также и линейный масштаб. Линейный масштаб - это графический масштаб в виде масштабной линейки, разделённой на равные части. Это – прямая линия, разделённая на равные части (обычно сантиметры). У каждого деления линии подписывают соответствующее ему расстояние на местности. Первое деление слева от 0 делят на более мелкие части. С помощью линейного масштаба узнают точные размеры объектов, изображённых на плане местности, и расстояния между ними.

Задача. Найдите расстояние от Москвы до Северного полюса, если на карте это расстояние – 3,5 см, а М 1:100000000.

Составим пропорцию: х= , т. е. х= 350000000см=3500км.

Ответ. Расстояние на местности от Москвы до Северного полюса – 3500км.

ИЗОБРАЗИТЕЛЬНОЕ ИСКУССТВО

Алексей Петрович Стахов, доктор технических наук (1972 г.), профессор (1974 г.), академик Академии инженерных наук Украины так пишет о гармонии:

"С давних пор человек стремится окружать себя красивыми вещами. Уже предметы обихода жителей древности, которые, казалось бы, преследовали чисто утилитарную цель - служить хранилищем воды, оружием на охоте и т. д. , демонстрируют стремление человека к красоте. На определенном этапе своего развития человек начал задаваться вопросом: почему тот или иной предмет является красивым и что является основой прекрасного? Уже в Древней Греции изучение сущности красоты, прекрасного, сформировалось в самостоятельную ветвь науки - эстетику, которая у античных философов была неотделима от космологии. Тогда же родилось представление о том, что основой прекрасного является гармония.

Красота и гармония стали важнейшими категориями познания, в определенной степени даже его целью, ибо в конечном итоге художник ищет истину в красоте, а ученый - красоту в истине. Красота скульптуры, красота храма, красота картины, симфонии, поэмы. Что между ними общего? Разве можно сравнивать красоту храма с красотой ноктюрна? Оказывается можно, если будут найдены единые критерии прекрасного, если будут открыты общие формулы красоты, объединяющие понятие прекрасного самых различных объектов - от цветка ромашки до красоты обнаженного человеческого тела?. ".

Известный итальянский теоретик архитектуры Леон-Баттиста Альберти, написавший много книг о зодчестве, говорил о гармонии следующее:

"Есть нечто большее, слагающееся из сочетания и связи трех вещей (числа, ограничения и размещения), нечто, чем чудесно озаряется весь лик красоты. Это мы называем гармонией, которая, без сомнения, источник всякой прелести и красоты. Ведь назначение и цель гармонии - упорядочить части, вообще говоря, различные по природе, неким совершенным соотношением так, чтобы они одна другой соответствовали, создавая красоту. Она охватывает всю жизнь человеческую, пронизывает всю природу вещей. Ибо все, что производит природа, все это соизмеряется законом гармонии. И нет у природы большей заботы, чем та, чтобы произведенное ею было совершенным. Этого никак не достичь без гармонии, ибо без нее распадается высшее согласие частей".

В Большой Советской Энциклопедии дается следующее определение понятия "гармония":

"Гармония - соразмерность частей и целого, слияние различных компонентов объекта в единое органическое целое. В гармонии получают внешнее выявление внутренняя упорядоченность и мера бытия".

"Золотая пропорция" - это понятие математическое и ее изучение – это прежде всего задача науки. Но она же является критерием гармонии и красоты, а это уже категория искусства и эстетики, которая изучает гармонию и красоту с математической точки зрения.

В классике изобразительного искусства на протяжении многих веков прослеживается приём построения пропорции, называемый золотым сечением, или золотым числом. (этот термин ввел Леонардо да Винчи). Золотое сечение – это такое пропорциональное деление отрезка на неравные части, при котором весь отрезок так относится к большей части, как сама большая часть относится к меньшей; или другими словами, меньший отрезок так относится к большему, как больший ко всему.

a: b = b: c или с: b = b: а.

В искусстве за золотое сечение принимают число 1:1,62 или

То есть приближённое выражение отношения меньшей величины в пропорции к её большей величине.

Золотое число наблюдается в пропорциях гармонично развитого человека: длина головы делит в золотом сечении расстояние от талии до макушки.

Кроме этого есть и еще несколько основных золотых пропорции нашего тела: расстояние от кончиков пальцев до запястья и от запястья до локтя равно 1:1. 618 расстояние от уровня плеча до макушки головы и размера головы равно 1:1. 618 расстояние от точки пупа до макушки головы и от уровня плеча до макушки головы равно 1:1. 618 расстояние точки пупа до коленей и от коленей до ступней равно 1:1. 618 расстояние от кончика подбородка до кончика верхней губы и от кончика верхней губы до ноздрей равно 1:1. 618 расстояние от кончика подбородка до верхней линии бровей и от верхней линии бровей до макушки равно 1:1. 618 расстояние от кончика подбородка до верхней линии бровей и от верхней линии бровей до макушки равно 1:1. 618

В произведениях изобразительного искусства художники и скульпторы осознанно или подсознательно, доверяя своему тренированному глазу часто применяют соотношение размеров в золотой пропорции.

Это же явление наблюдается и в иных конструкциях природы: в спиралях моллюсков, в венчиках цветков и ещё во многих знакомых нам вещах, например, расположение листьев на побеге тоже подчиняется золотому числу!

С глубокой древности люди используют математический аппарат в повседневной жизни. Одним из них является пропорция. Она используется, начиная с приготовления пищи и заканчивая произведениями искусства, такими как скульптура, живопись, архитектура, а также в живой природе.

Сегодня мы познакомимся с необычной пропорцией, называемой золотым сечением и даже божественной пропорцией. Вы узнаете какую роль играет эта пропорция в окружающем мире, как она связана с понятием гармонии и как и почему она используется в искусстве (живописи, архитектуре, фотографии…), дизайне…


В живописи, фотографии, дизайне золотое сечение очень часто используется в виде классических приемов композиции, о чем вы можете прочитать, заглянув на любой сайт, посвященный этим видам искусства.] Основная рекомендация заключается в следующем. Объект, являющийся центральной фигурой в композиции, далеко не всегда должен располагаться в центре. Определенные точки в композиции автоматически привлекают внимание. Таких точек 4, и расположены они на расстоянии 3/8 и 5/8 от краев картины. Нарисовав сетку, получим эти точки в местах пересечения линий (см. фотографию).


Под золотым сечением понимается такое пропорциональное деление отрезка на неравные части. При котором длина всего отрезка так относится к его большей части, как длина большей части относится к длине меньшей. Это отношение равно иррациональному числу Ф= Впервые золотое сечение встречается в «Началах» Евклида (300 лет до н.э.). Лука Пачоли, современник Леонарда да Винчи, назвал его «божественной пропорцией». Золотое сечение обозначают символами PHI или Ф (в честь древнегреческого скульптора Фидия, всегда использовавшего в своих работах золотое сечение). Математик Фибоначчи впервые получил последовательность чисел, названной в его честь числами Фибоначчи 1,1,2,3,5,8,13,21,34,55 … Особенностью этого числового ряда является то, что каждый его член, начиная с третьего, равен сумме двух предыдущих: 1+1=2; 1+2=3; 2+3=5; 3+5=8 …При этом отношение двух соседних членов равно золотому сечению, т.е. числу Ф. Рассматривая закономерности, связанные с проявлением золотого сечения, обычно используют обратную величину числа Ф: 1/1,618 = 0,618 a+ba+b a bb: a = (a+b) : b


Вопрос: Что общего в расположении полипептидных цепей нуклеиновых кислот, лепестков розы, раковин моллюсков, рогов млекопитающих, подсолнуха, далеких космических галактик? Ответ: в основе их структуры лежит золотая (логарифмическая) спираль. Эта спираль вписывается в золотой прямоугольник (отношение длины и ширины которого равно числу Ф). Последовательно отрезая от него квадраты и вписывая в каждый из них по четверти окружности, мы и получим золотую спираль (см. фото) Роль спирали в строении животных и растительных объектов открыл Т.Кук, доказав, что феномен роста связан с золотой спиралью. Носитель генетического кода - молекула ДНК - состоит из двух переплетенных между собой спиралей. Не так давно спиральные структуры обнаружены и в неживой природе




Филлотаксисом называется своеобразное решетчатое расположение листьев, семян, чешуек многих видов растений. Ряды ближайших соседей в таких решетках разворачиваются по спиралям или закручиваются винтовыми линиями вокруг цилиндра. Семечки в подсолнухе расположены по логарифмическим спиралям. При этом отношение числа левых и правых спиралей равно отношению соседних чисел Фибоначчи. Можно встретить подсолнухи с отношением количества спиралей 34 /55 и 55/89.


Золотое сечение пронизывает всю историю искусства: пирамиды Хеопса, знаменитый греческий храм Парфенон, большинство греческих скульптур памятников, непревзойденная Джоконда Леонарда да Винчи, картины Рафаэля, Шишкина, этюды Шопена, музыка Бетховена, Чайковского, стихи Пушкина … вот далеко не полный перечень выдающихся произведений искусства, наполненных чудесной гармонией основанной на золотом сечении. На фотографии показаны здания, при делении основных масс конструкций которых использовалось золотое сечение. Обычно считается, что такое членение используется в зданиях, построенных в классическом стиле. Однако, посмотрите на Смольный собор, построенный в стиле барокко, и вы без труда обнаружите золотое сечение.


Идеальным, совершенным считается тело, пропорции которого составляет золотое сечение. Основные пропорции были определены Леонардо да Винчи, и художники стали сознательно их использовать. Основное деление человеческого тела – это деление точкой пупа. Отношение расстояния от пупа до ступни к расстоянию от пупа до макушки составляют золотое сечение. Идеальной женской фигурой считается фигура Афродиты Милосской (см. рисунок). Интересно, что статистически средние размеры тел различных людей также подчинены правилу золотого сечения (об этом свидетельствуют антропологические исследования Цейзинга (1855 г.), который провел измерения почти 2000 человек. Из любопытства можно самим проверить насколько близко ваше тело к идеальному. Зайдите в Интернет, наберите «идеальные пропорции человеческого тела», проведите измерения и сделайте выводы. Существуют определенные правила, по которым изображают фигуру человека, основанные на понятии пропорциональности размеров различных частей тела.


Форма птичьих яиц описывается золотым сечением. Сегодня уже установлено, что при такой конфигурации прочностные характеристики оболочки оказываются наиболее высокими. Совершенная форма тела стрекозы создана по законам золотого сечения: отношение длины хвоста и корпуса равно отношению общей длины к длине хвоста. Резюме Не одно столетие ученые применяют уникальные математические свойства золотого сечения. Это отношение обнаруживается во всех живых организмах, растениях на всех уровнях их развития. Универсальность его проявления в строении органов, систем, их функциональных параметрах позволяет предполагать, что оно играет роль кирпичика в фундаменте всего живого на Земле. Последние исследования в области астрономии, физики показывают, что это сечение имеет отношение ко всему Мирозданию.


1. Разделите отрезок длиной 16 см в отношении золотого сечения. Используйте числа Фибоначчи 1 вариант – 3 и 5 2 вариант - 2 и 3 2. Длина прямоугольника равна 20 см (1 вариант), 15 см(2 вариант). Найдите такую ширину прямоугольника, чтобы отношение длины к ширине составило золотое сечение Ф=1,6 Решите задачу, составив уравнение 3. Проверьте, насколько идеально одно из отношений вашей ладони: отношение длины указательного пальца к длине двух его фаланг от конца пальца. Измерьте с помощью линейки указанные длины и найдите их отношение. Округлите полученное число до десятых и сравните с Ф=1,6 (определите, насколько оно больше или меньше числа Ф)

Описание презентации по отдельным слайдам:

1 слайд

Описание слайда:

2 слайд

Описание слайда:

Вступление Представителям многих профессий приходится решать практические задачи на пропорции Художники, ученые, модельеры, дизайнеры делают свои расчеты, чертежи или наброски, исходя из соотношения «Золотого сечения». Они используют мерки с тела человека, сотворенного также по принципу «Золотого сечения». В повседневной жизни мы используем математические навыки, в том числе и пропорцию. Без неё не обойтись во многих задачах физики, химии, географии и т.д. Гипотеза: человек в своей деятельности постоянно сталкивается с решение практических задач на пропорции.

3 слайд

Описание слайда:

Из истории изучения пропорции Пропорции начали изучать еще в древности. В 4 веке до н.э. древнегреческий математик Евдокс дал определение пропорции, составленной из величин любой природы. С пропорциями связывались представления о красоте, порядке и гармонии, о созвучных аккордах в музыке. Слово «пропорция» ввел в употребление Цицерон в 1 веке до н.э., который буквально означал аналогия, соотношение.

4 слайд

Описание слайда:

Теория отношений и пропорций была подробно изложена в «Началах» Евклида (III век до нашей эры), там, в частности, приводится и доказательство основного свойства пропорции. Оно звучит так: «В верной пропорции произведение крайних членов равно произведению средних. a: b = c: d крайние средние

5 слайд

Описание слайда:

Виды пропорций В математике различают два типа пропорций: Случайные (например, отношение или пропорции между числом слогов самых длинных и самых коротких названия населённых пунктов.) Закономерные (например, пропорция между длительностью нот). «Закономерные» отношения Прямо пропорциональны Обратно пропорциональные широко используются в разнообразнейших расчетах,производимых школьниками,инженерами,администраторами и т.д Прямо прпорциональные величины: длина окружности и ее радиус; размеры предметов и размеры отбрасываемых ими теней; Обратно пропорциональные величины: продолжительность звучание одного такта, и число тактов используемых за одну минуту;

6 слайд

Описание слайда:

ЗОЛОТОЕ СЕЧЕНИЕ В искусстве чаще других встречается пропорция, получившая название «золотое сечение». Золотым сечением и даже «божественной пропорцией» называли математики древности и средневековья деление отрезка, при котором длинна всего отрезка так относится к длине его большей части, как длинна большей части к меньшей. Приближенно это отношение равно 0, 618 ≈5/8. Золотое сечение чаще всего применяется в произведениях искусства, архитектуре, встречается и в природе.

7 слайд

Описание слайда:

Применение пропорции пропорция медицина кулинария география русский язык биология физика Изобразительное искусство технология Сельское хозяйство черчение

8 слайд

Описание слайда:

ПРОПОРЦИИ НА КУХНЕ Понятие пропорции используется в кулинарии. Пропорция позволяет рассчитать количество продуктов для приготовления одного и того же блюда для разного числа гостей. Задача. Для приготовления 4 порций картофельной запеканки, нужно взять 0,44 кг картофеля. Сколько нужно взять картофеля для приготовления 10 порций запеканки. Решение 4:0,44=10:х => х=0,44*10:4= 1,1 кг. Ответ: нужно взять 1 кг 100 г. картофеля.

9 слайд

Описание слайда:

Пропорции и медицина При изготовлении лекарств тоже соблюдаются пропорции. Здесь необходима точность, так как при нарушении пропорций, составляющих лекарство ингредиентов, может получиться не лекарство, а яд. Задача из народных рецептов: Для приготовления настойки прополиса нужно залить измельчённый прополис водой в отношении 2:5. Сколько потребуется воды для 150 г. прополиса. Решение 2:5=150:х => х=150*5:2= 375г. Ответ: потребуется 375г. воды

10 слайд

Описание слайда:

Пропорции на уроках технологии Размеры элементов кукольного сарафана отличаются от соответствующих размеров сарафана девушки в одно и тоже число раз. Задача: Длина изделия на выкройке 75см. Вычислите масштаб чертежа, если на нем длина сарафана будет равна 15см. Ответ 1:5.

11 слайд

Описание слайда:

Пропорция в географии В географии также применяют пропорцию – масштаб. Масштаб-это отношение длины отрезка на карте к длине соответствующего отрезка на местности. Существуют разные виды масштаба: численный, линейный и именованный.

12 слайд

Описание слайда:

Пропорции в физике С глубокой древности люди пользовались различными рычагами. Весло, лом, весы, ножницы, качели, тачка и т.д. – примеры рычагов. Выигрыш, который дает рычаг в прилагаемом усилии, определяется пропорцией, где M и m – массы грузов, а L и l – «плечи» рычага.

13 слайд

Описание слайда:

Химия Для решения задач по химии часто используется пропорция. Например для нахождения количества вещества по его процентному содержанию удобно воспользоваться пропорцией. Задача: Сколько кг соли в 10 кг соленой воды, если процентное содержание соли 15%. Решение: 10:100%=Х:15% ; =>Х= 15*10:100=1,5 (кг) соли. Ответ: 1,5 кг соли.

14 слайд

Описание слайда:

Биология Рассматривая расположение листьев на общем стебле растений, можно заметить, что между каждыми двумя парами листьев (А и С) третья расположена в месте золотого сечения (точка В).

15 слайд

Описание слайда:

Русский язык В русском языке встречаются пословицы и поговорки, устанавливающие прямую и обратную зависимость. Например: 1) Как аукнется, так и откликнется. 2) Чем выше пень, тем выше тень. 3) Когда гнев впереди- ум позади. 4) Когда карман сух, тогда и суд глух.

16 слайд

Описание слайда:

Пропорция в архитектуре Пропорции золотого сечения создают впечатление гармонии, красоты. Поэтому скульпторы, архитекторы, художники использовали и используют золотое сечение в своих произведениях. Золотые пропорции присутствуют в размерах фасада древнегреческого храма Парфенона, Собора Василия Блаженного, Собора на Нерли и многих других шедеврах архитектуры.

МОУ «Парфеньевская средняя общеобразовательная школа»

Руководитель Смирнова Л.А., учитель математики

2010-2011 учебный год

Вступление

Есть вещи, которые нельзя объяснить. Вот вы подходите к пустой скамейке и садитесь на нее. Где вы сядете - посередине? Или, может быть, с самого края? Нет, скорее всего, не то и не другое. Вы сядете так, что отношение одной части скамейки к другой, относительно вашего тела, будет равно примерно 1,62. Простая вещь, абсолютно инстинктивная... Садясь на скамейку, вы произвели «золотое сечение». О золотом сечении знали еще в древнем Египте и Вавилоне, в Индии и Китае. Великий Пифагор создал тайную школу, где изучалась мистическая суть «золотого сечения». Евклид применил его, создавая свою геометрию, а Фидий - свои бессмертные скульптуры. Платон рассказывал, что Вселенная устроена согласно «золотому сечению». А Аристотель нашел соответствие «золотого сечения» этическому закону. Высшую гармонию «золотого сечения» будут проповедовать Леонардо да Винчи и Микеланджело, ведь красота и «золотое сечение» - это одно и то же. А христианские мистики будут рисовать на стенах своих монастырей пентаграммы «золотого сечения», спасаясь от Дьявола. При этом ученые - от Пачоли до Эйнштейна - будут искать, но так и не найдут его точного значения. Бесконечный ряд после запятой - 1,6180339887... Странная, загадочная, необъяснимая вещь: эта божественная пропорция мистическим образом сопутствует всему живому. Неживая природа не знает, что такое «золотое сечение». Но вы непременно увидите эту пропорцию и в изгибах морских раковин, и в форме цветов, и в облике жуков, и в красивом человеческом теле. Все живое и все красивое - все подчиняется божественному закону, имя которому - «золотое сечение». Так что же такое «золотое сечение»?.. Что это за идеальное, божественное сочетание? Может быть, это закон красоты? Или все-таки он - мистическая тайна? Научный феномен или этический принцип? Ответ неизвестен до сих пор. Точнее - нет, известен. «Золотое сечение» - это и то, и другое, и третье. Только не по отдельности, а одновременно... И в этом его подлинная загадка, его великая тайна.

Понятие «золотое сечение».

Золотое сечение – это такое пропорциональное деление отрезка на неравные части, при котором меньший отрезок так относится к большему, как больший ко всему.

a: b = b: c или с: b = b: а.

Эта пропорция равна:

Свойства золотого сечения создали вокруг этого числа романтический ореол таинственности и чуть ли не мистического поклонения.

К примеру, в правильной пятиконечной звезде, каждый сегмент делится пересекающим его сегментом в золотом сечении (т. е. отношение синего отрезка к зелёному, красного к синему, зелёного к фиолетовому, равны 1.618 Принято считать, что понятие о золотом сечении ввел в научный обиход Пифагор. Есть предположение, что Пифагор свое знание позаимствовал у египтян и вавилонян. И действительно, пропорции пирамиды Хеопса, храмов, барельефов, предметов быта и украшений из гробницы Тутанхамона свидетельствуют, что египетские мастера пользовались соотношениями золотого деления при их создании.

Примеры применения золотого сечения

Золотое сечение в математике

Практическое знакомство с золотым сечением начинают с деления отрезка прямой в золотой пропорции с помощью циркуля и линейки. Из точки В восставляется перпендикуляр, равный половине АВ . Полученная точка С соединяется линией с точкой А . На полученной линии откладывается отрезок ВС , заканчивающийся точкой D . Отрезок AD переносится на прямую АВ . Полученная при этом точка Е делит отрезок АВ в соотношении золотой пропорции. Отрезки золотой пропорции выражаются бесконечной иррациональной дробью AE = 0,618..., если АВ принять за единицу, ВЕ = 0,382... Для практических целей часто используют приближенные значения 0,62 и 0,38. Если отрезок АВ принять за 100 частей, то большая часть отрезка равна 62, а меньшая – 38 частям.

Свойства золотого сечения описываются уравнением: x 2 x – 1 = 0. Решение этого уравнения:

Золотое сечение в искусстве

в музыке

Наиболее обширное исследование проявлений золотого сечения в музыке было предпринято в 1925 году искусствоведом Л.Сабанеевым. Им было изучено две тысячи произведений различных композиторов. По его мнению, временное протяжение музыкального произведения делится «некоторыми вехами», которые выделяются при восприятии музыки и облегчают созерцание формы целого. Все эти музыкальные вехи делят целое на части, как правило, по закону золотого сечения.

По наблюдениям Л.Сабанеева, в музыкальных произведениях различных композиторов обычно констатируется не одно золотое сечение, а целая серия подобных сечений. Каждое такое сечение отражает свое музыкальное событие, качественный скачок в развитии музыкальной темы. В изученных им 1770 сочинениях 42 композиторов наблюдалось 3275 золотых сечений. Количество произведений, в которых наблюдалось хотя бы одно золотое сечение, составило 1338. Наибольшее количество музыкальных произведений, в которых имеется золотое сечение, у Аренского (95%), Бетховена (97%), Гайдна (97%), Моцарта (91%), Скрябина (90%), Шопена (92%), Шуберта (91%).
Наиболее детально были изучены все 27 этюдов Шопена. В них обнаружено 154 золотых сечения; всего в трех этюдах золотое сечение отсутствовало. В некоторых случаях строение музыкального произведения сочетало в себе симметричность и золотое сечение одновременно; в этих случаях оно делилось на несколько симметричных частей, в каждой из которых проявляется золотое сечение. У Бетховена также сочинения делятся на две симметричные части, а внутри каждой из них наблюдаются проявления золотой пропорции.
Причем, чем талантливее композитор, тем в большем количестве его произведений найдено золотых сечений. У Аренского, Бетховена, Бородина, Гайдна, Моцарта, Скрябина, Шопена и Шуберта золотые сечения найдены в 90% всех произведений. По мнению Сабанеева, золотое сечение приводит к впечатлению особой стройности музыкального сочинения. Можно признать, что золотая пропорция является критерием гармонии композиции музыкального произведения.

в кино

В кино С. Эйзенштейн искусственно построил фильм Броненосец Потёмкин по правилам «золотого сечения». Он разбил ленту на пять частей. В первых трёх действие разворачивается на корабле. В двух последних - в Одессе, где разворачивается восстание. Этот переход в город происходит точно в точке золотого сечения. Да и в каждой части есть свой перелом, происходящий по закону золотого сечения .


Золотое сечение в живописи

Переходя к примерам “золотого сечения” в живописи, нельзя не остановить своего внимания на творчестве Леонардо да Винчи. Его личность – одна из загадок истории. Сам Леонардо да Винчи говорил: «Пусть никто, не будучи математиком, не дерзнет читать мои труды». Посмотрим внимательно на картину "Джоконда". Портрет Моны Лизы (Джоконды) долгие годы привлекает внимание исследователей, которые обнаружили, что композиция рисунка основана на золотых треугольниках, являющихся частями правильного звездчатого пятиугольника.

Также пропорция золотого сечения проявляется в картине Шишкина. На этой знаменитой картине И. И. Шишкина с очевидностью просматриваются мотивы золотого сечения. Ярко освещенная солнцем сосна (стоящая на первом плане) делит длину картины по золотому сечению. Справа от сосны - освещенный солнцем пригорок. Он делит по золотому сечению правую часть картины по горизонтали.

В картине Рафаэля "Избиение младенцев" просматривается другой элемент золотой пропорции - золотая спираль. На подготовительном эскизе Рафаэля проведены красные линии, идущие от смыслового центра композиции - точки, где пальцы воина сомкнулись вокруг лодыжки ребенка - вдоль фигур ребенка, женщины, прижимающей его к себе, воина с занесенным мечом и затем вдоль фигур такой же группы в правой части эскиза. Неизвестно, строил ли Рафаэль золотую спираль или чувствовал её.

Т.Кук использовал при анализе картины Сандро Боттичелли «рождение Венеры» золотое сечение.

Золотое сечение в архитектуре

Одним из красивейших произведений древнегреческой архитектуры является Парфенон (V в. до н. э.).

На рисунках виден целый ряд закономерностей, связанных с золотым сечением. Пропорции здания можно выразить через различные степени числа Ф=0,618...

На плане пола Парфенона также можно заметить "золотые прямоугольники"

Золотое соотношение мы можем увидеть и в здании собора Парижской Богоматери (Нотр-дам де Пари) и в пирамиде Хеопса:

Не только египетские пиpамиды постpоены в соответствии с совеpшенными пpопоpциями золотого сечения, то же самое явление обнаpужено и у мексиканских пиpамид.

Я решила рассмотреть планы церквей Парфеньева и посмотреть, нет ли там золотого отношения. Результат - приложение (мультимедийная презентация).

Золотое сечение в скульптуре

Золотая пропорция применялась многими античными скульпторами. Известна золотая пропорция статуи Аполлона Бельведерского: рост изображенного человека делится пупочной линией в золотом сечении.

Афина Парфенос Зевс Олимпийский

Еще в эпоху Возрождения художники открыли, что любая картина имеет определенные точки, невольно приковывающие наше внимание, так называемые зрительные центры. При этом абсолютно неважно, какой формат имеет картина - горизонтальный или вертикальный. Таких точек всего четыре, они делят величину изображения по горизонтали и вертикали в золотом сечении, т.е. расположены они на расстоянии примерно 3/8 и 5/8 от соответствующих краев плоскости.

Золотое сечение в шрифтах и бытовых предметах

Золотые пропорции в частях тела человека

В 1855 г. немецкий исследователь золотого сечения профессор Цейзинг опубликовал свой труд «Эстетические исследования» . Цейзинг измерил около двух тысяч человеческих тел и пришел к выводу, что золотое сечение выражает средний статистический закон. Деление тела точкой пупа – важнейший показатель золотого сечения. Пропорции мужского тела колеблются в пределах среднего отношения 13: 8 = 1,625 и несколько ближе подходят к золотому сечению, чем пропорции женского тела, в отношении которого среднее значение пропорции выражается в соотношении 8: 5 = 1,6. У новорожденного пропорция составляет отношение 1: 1, к 13 годам она равна 1,6, а к 21 году равняется мужской.
Пропорции золотого сечения проявляются и в отношении других частей тела – длина плеча, предплечья и кисти, кисти и пальцев и т.д.
Справедливость своей теории Цейзинг проверял на греческих статуях. Наиболее подробно он разработал пропорции Аполлона Бельведерского. Подверглись исследованию греческие вазы, архитектурные сооружения различных эпох, растения, животные, птичьи яйца, музыкальные тона, стихотворные размеры.


Я провела подобное исследование в 11 классе. Результаты измерений приведены в таблице. Приложение (мультимедийная презентация).

Золотое сечение в биологии и живой природе

В биологических исследованиях было показано, что, начиная с вирусов и растений и кончая организмом человека, всюду выявляется золотая пропорция, характеризующая соразмерность и гармоничность их строения. Золотое сечение признано универсальным законом живых систем.

Рассмотрим побег цикория. От основного стебля образовался отросток. Тут же расположился первый листок. Отросток делает сильный выброс в пространство, останавливается, выпускает листок, но уже короче первого, снова делает выброс в пространство, но уже меньшей силы, выпускает листок еще меньшего размера и снова выброс .

Если первый выброс принять за 100 единиц, то второй равен 62 единицам, третий – 38, четвертый – 24 и т.д. Длина лепестков тоже подчинена золотой пропорции. В росте, завоевании пространства растение сохраняло определенные пропорции. Импульсы его роста постепенно уменьшались в пропорции золотого сечения. Было установлено, что числовой ряд чисел Фибоначчи характеризует структурную организацию многих живых систем. Например, винтовое листорасположение на ветке составляет дробь (число оборотов на стебле/число листьев в цикле, напр. 2/5; 3/8; 5/13), соответствующую рядам Фибоначчи. Хорошо известна "золотая" пропорция пятилепестковых цветков яблони, груши и многих других растений. Носители генетического кода - молекулы ДНК и РНК - имеют структуру двойной спирали; ее размеры почти полностью соответствуют числам ряда Фибоначчи. Гете подчеркивал тенденцию природы к спиральности.

Паук плетет паутину спиралеобразно. Спиралью закручивается ураган. Испуганное стадо северных оленей разбегается по спирали. Гете называл спираль "кривой жизни". Спираль увидели в расположении семян подсолнечника, в шишках сосны, ананасах, кактусах и т.д. У многих бабочек соотношение размеров грудной и брюшной части тела отвечает золотой пропорции. Сложив крылья, ночная бабочка образует правильный равносторонний треугольник. Но стоит развести крылья, и вы увидите тот же принцип членения тела на 2,3,5,8. Стрекоза также создана по законам золотой пропорции: отношение длин хвоста и корпуса равно отношению общей длины к длине хвоста

В ящерице длина ее хвоста так относится к длине остального тела, как 62 к 38. Можно заметить золотые пропорции, если внимательно посмотреть на яйцо птицы.

Все живое создано в соответствии с пропорцией Золотого Сечения

Некоторые открытия и теории современной науки,
связанные с «золотым сечением»

1.Плитки Пенроуза

В античной науке была широко известна «проблема паркета», которая сводится к плотному заполнению плоскости геометрическими фигурами одного вида. Как известно, такое заполнение может быть осуществлено с помощью треугольников , квадратов и шестиугольников . С помощью пятиугольников ( пентагонов ) такое заполнение невозможно.

Проблема паркета

Рассмотрим еще раз внимательно правильный пятиугольник, называемый также пентагоном или пентаграммой , плоскую геометрическую фигуру, основанную на «золотом сечении».

Правильный пятиугольник или пентагон

Как известно, после проведения в пентагоне диагоналей исходный пентагон может быть представлен как совокупность трех типов геометрических фигур. В центре находится новый пентагон, образуемый точками пересечения диагоналей. Остальная часть пентагона включает в себя пять равнобедренных треугольников, окрашенных в желтый цвет, и пять равнобедренных треугольников, окрашенных в красный цвет. Желтые треугольники являются «золотыми», так как отношение бедра к основанию равно золотой пропорции; они имеют острые углы в 36 при вершине и острые углы в 72 при основании. Красные треугольники также являются «золотыми», так как отношение бедра к основанию равно золотой пропорции; они имеют тупой угол в 108 при вершине и острые углы в 36 при основании. А теперь соединим два желтых треугольника и два красных треугольника их основаниями. В результате мы получим два «золотых» ромба . Первый из них (желтый) имеет острый угол в 36 и тупой угол в 144 . Левый ромб будем называть тонким ромбом, а правый ромб – толстым ромбом.

«Золотые» ромбы

Английский математик и физик Роджерс Пенроуз использовал «золотые» ромбы для конструирования «золотого» паркета, который был назван плитками Пенроуза. Плитки Пенроуза представляют собой комбинацию толстых и тонких ромбов.

Плитки Пенроуза

Важно подчеркнуть, что плитки Пенроуза имеют «пентагональную» симметрию или симметрию 5-го порядка, а отношение числа толстых ромбов к тонким стремится к золотой пропорции!

2.Квазикристаллы

12 ноября 1984 г. в небольшой статье, опубликованной в авторитетном журнале «Physical Review Letters» израильским физиком Даном Шехтманом, было предъявлено экспериментальное доказательство существования металлического сплава с исключительными свойствами. При исследовании методами электронной дифракции этот сплав проявил все признаки кристалла. Его дифракционная картина составлена из ярких и регулярно расположенных точек, совсем как у кристалла. Однако эта картина характеризуется наличием «икосаэдрической» или «пентангональной» симметрии, строго запрещенной в кристалле из геометрических соображений. Такие необычные сплавы были названы квазикристаллами. Менее чем за год были открыты многие другие сплавы подобного типа. Их было так много, что квазикристаллическое состояние оказалось намного более распространенным, чем это можно было бы представить. Открытие квазикристаллов является еще одним научным подтверждением, что, возможно, именно «золотая пропорция», проявляющая себя как в мире живой природы, так и в мире минералов, является главной пропорцией Мироздания.

3.Фуллерены

Термином «фуллерены » называют замкнутые молекулы типа С 60 , С 70 , С 76 , С 84 , в которых все атомы углерода находятся на сферической или сфероидальной поверхности. В этих молекулах атомы углерода расположены в вершинах правильных шестиугольников или пятиугольников, которые покрывают поверхность сферы или сфероида. Центральное место среди фуллеренов занимает молекула С 60 , которая характеризуется наибольшей симметрией и как следствие наибольшей стабильностью. В этой молекуле, напоминающей покрышку футбольного мяча и имеющую структуру правильного усеченного икосаэдра, атомы углерода располагаются на сферической поверхности в вершинах 20 правильных шестиугольников и 12 правильных пятиугольников, так что каждый шестиугольник граничит с тремя шестиугольниками и тремя пятиугольниками, а каждый пятиугольник граничит с шестиугольниками. «Фуллерены» по существу представляют собой «рукотворные» структуры, вытекающие из фундаментальных физических исследований. Впервые они были синтезированы в учеными Г. Крото и Р. Смолли (получившими в 1996 г. Нобелевскую премию за это открытие). Но в их неожиданно обнаружили в породах , то есть фуллерены оказались не только «рукотворными», но и природными образованиями. Сейчас фуллерены интенсивно изучают в лабораториях разных стран, пытаясь установить условия их образования, структуру, свойства и возможные сферы применения.

4.Резонансная теория Солнечной системы

Частоты обращения планет и разности частот обращений образуют спектр с интервалом, равным золотой пропорции.

5. Фибоначчиевые резонансы генетического кода

Установление наукой ныне широко известного факта поразительной простоты основных принципов кодирования наследственной информации в живых организмах относится к числу важнейших открытий человечества. Эта простота заключается в том, что наследственная информация кодируется текстами из трехбуквенных слов – триплетов или кодонов, составленных на базе алфавита из четырех букв – азотистых оснований А (аденин), С (цитозин), G (гуанин), T (тимин). Данная система записи по существу едина для всего необозримого множества разнообразных живых организмов и называется генетическим кодом. В 1990 г. французский исследователь Jean-Claude Perez, работавший в тот период научным сотрудником фирмы IBM, сделал весьма неожиданное открытие в области генетического кодирования. Он открыл математический закон, управляющий самоорганизацией оснований Т, С, А, G внутри ДНК. Он обнаружил, что последовательные множества нуклеотидов ДНК организованы в структуры дальнего порядка, называемые РЕЗОНАНСАМИ . Резонанс представляет собой особую пропорцию, обеспечивающую разделение ДНК в соответствии с числами Фибоначчи (1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, …). Например, генетический код -цепи инсулина имеет следующий вид:

A T G- TT G-G T C-AA T -CAG-CAC-C TT - T G T -GG T - T C T -CAC-C T C-G TT - GAA-GC T
-
TT G- T AC-C TT -G TT - T GC-GG T -GAA-CG T -GG T - TT C- TT C- T AC-AC T -CC T -AAG-
AC
T

6. Золотая пропорция в теории трансфинитных множеств Кантора и квантовой физике (E-infinity theory)

В последние годы наблюдается повышенный интерес теоретической физики к «золотому сечению». В работах английского физика египетского происхождения Мохаммеда Эль Нашие показана связь «золотого сечения» с квантовой физикой.

Заключение

Длившаяся несколько тысячелетий драматическая история Золотого Сечения в начале 21-го века - «Века Гармонии» - может закончиться большим триумфом для Золотого Сечения. Плитки Пенроуза, резонансная теория Солнечной системы (Молчанов, Бутусов), квазикристаллы (Шехтман), фуллерены (Крото и Смолли, Нобелевская Премия 1996 г.) стали только предвестниками этого триумфа. «Математика гармонии» (Стахов), гиперболические функции Фибоначчи и Люка (Стахов, Ткаченко, Розин), «геометрия Боднара», «Закон структурной гармонии систем» (Сороко), «теория E-infinity» (Эль Нашие), матрицы Фибоначчи и «золотые» квадратные матрицы (Стахов) и, наконец, «золотые» геноматрицы (Петухов) – вот далеко не полный перечень современных научных открытий, основанных на Золотом Сечении. Эти открытия дают основание высказать предположение, что Золотое Сечение является некоторым «метафизическим» знанием, «проточислом», «универсальным кодом Природы», который может стать основой для дальнейшего развития науки, в частности, математики, теоретической физики, генетики, компьютерной науки.