Как найти радиус окружности: в помощь школьникам. Как найти радиус окружности

Сначала разберемся в отличии между кругом и окружностью. Чтобы увидеть эту разницу, достаточно рассмотреть, чем являются обе фигуры. Это бесчисленное количество точек плоскости, располагающиеся на равном расстоянии от единственной центральной точки. Но, если круг состоит и из внутреннего пространства, то окружности оно не принадлежит. Получается, что круг это и окружность, ограничивающая его (о-кру(г)жность), и бесчисленное число точек, что внутри окружности.

Для любой точки L , лежащей на окружности, действует равенство OL=R . (Длина отрезка OL равняется радиусу окружности).

Отрезок, который соединяет две точки окружности, является ее хордой .

Хорда, проходящая прямо через центр окружности, является диаметром этой окружности (D) . Диаметр можно вычислить по формуле: D=2R

Длина окружности вычисляется по формуле: C=2\pi R

Площадь круга : S=\pi R^{2}

Дугой окружности называется та ее часть, которая располагается между двух ее точек. Эти две точки и определяют две дуги окружности. Хорда CD стягивает две дуги: CMD и CLD . Одинаковые хорды стягивают одинаковые дуги.

Центральным углом называется такой угол, который находится между двух радиусов.

Длину дуги можно найти по формуле:

  1. Используя градусную меру: CD = \frac{\pi R \alpha ^{\circ}}{180^{\circ}}
  2. Используя радианную меру: CD = \alpha R

Диаметр, что перпендикулярен хорде, делит хорду и стянутые ею дуги пополам.

В случае, если хорды AB и CD окружности имеют пересечение в точке N , то произведения отрезков хорд, разделенные точкой N , равны между собой.

AN\cdot NB = CN \cdot ND

Касательная к окружности

Касательной к окружности принято называть прямую, у которой имеется одна общая точка с окружностью.

Если же у прямой есть две общие точки, ее называют секущей .

Если провести радиус в точку касания, он будет перпендикулярен касательной к окружности.

Проведем две касательные из этой точки к нашей окружности. Получится, что отрезки касательных сравняются один с другим, а центр окружности расположится на биссектрисе угла с вершиной в этой точке.

AC = CB

Теперь к окружности из нашей точки проведем касательную и секущую. Получим, что квадрат длины отрезка касательной будет равен произведению всего отрезка секущей на его внешнюю часть.

AC^{2} = CD \cdot BC

Можно сделать вывод: произведение целого отрезка первой секущей на его внешнюю часть равняется произведению целого отрезка второй секущей на его внешнюю часть.

AC \cdot BC = EC \cdot DC

Углы в окружности

Градусные меры центрального угла и дуги, на которую тот опирается, равны.

\angle COD = \cup CD = \alpha ^{\circ}

Вписанный угол — это угол, вершина которого находится на окружности, а стороны содержат хорды.

Вычислить его можно, узнав величину дуги, так как он равен половине этой дуги.

\angle AOB = 2 \angle ADB

Опирающийся на диаметр, вписанный угол, прямой.

\angle CBD = \angle CED = \angle CAD = 90^ {\circ}

Вписанные углы, которые опираются на одну дугу, тождественны.

Опирающиеся на одну хорду вписанные углы тождественны или их сумма равняется 180^ {\circ} .

\angle ADB + \angle AKB = 180^ {\circ}

\angle ADB = \angle AEB = \angle AFB

На одной окружности находятся вершины треугольников с тождественными углами и заданным основанием.

Угол с вершиной внутри окружности и расположенный между двумя хордами тождественен половине суммы угловых величин дуг окружности, которые заключаются внутри данного и вертикального углов.

\angle DMC = \angle ADM + \angle DAM = \frac{1}{2} \left (\cup DmC + \cup AlB \right)

Угол с вершиной вне окружности и расположенный между двумя секущими тождественен половине разности угловых величин дуг окружности, которые заключаются внутри угла.

\angle M = \angle CBD - \angle ACB = \frac{1}{2} \left (\cup DmC - \cup AlB \right)

Вписанная окружность

Вписанная окружность — это окружность, касающаяся сторон многоугольника.

В точке, где пересекаются биссектрисы углов многоугольника, располагается ее центр.

Окружность может быть вписанной не в каждый многоугольник.

Площадь многоугольника с вписанной окружностью находится по формуле:

S = pr ,

p — полупериметр многоугольника,

r — радиус вписанной окружности.

Отсюда следует, что радиус вписанной окружности равен:

r = \frac{S}{p}

Суммы длин противоположных сторон будут тождественны, если окружность вписана в выпуклый четырехугольник. И наоборот: в выпуклый четырехугольник вписывается окружность, если в нем суммы длин противоположных сторон тождественны.

AB + DC = AD + BC

В любой из треугольников возможно вписать окружность. Только одну единственную. В точке, где пересекаются биссектрисы внутренних углов фигуры, будет лежать центр этой вписанной окружности.

Радиус вписанной окружности вычисляется по формуле:

r = \frac{S}{p} ,

где p = \frac{a + b + c}{2}

Описанная окружность

Если окружность проходит через каждую вершину многоугольника, то такую окружность принято называть описанной около многоугольника .

В точке пересечения серединных перпендикуляров сторон этой фигуры будет находиться центр описанной окружности.

Радиус можно найти, вычислив его как радиус окружности, которая описана около треугольника, определенного любыми 3 -мя вершинами многоугольника.

Есть следующее условие: окружность возможно описать около четырехугольника только, если сумма его противоположных углов равна 180^{ \circ} .

\angle A + \angle C = \angle B + \angle D = 180^ {\circ}

Около любого треугольника можно описать окружность, причем одну-единственную. Центр такой окружности будет расположен в точке, где пересекаются серединные перпендикуляры сторон треугольника.

Радиус описанной окружности можно вычислить по формулам:

R = \frac{a}{2 \sin A} = \frac{b}{2 \sin B} = \frac{c}{2 \sin C}

R = \frac{abc}{4 S}

a , b , c — длины сторон треугольника,

S — площадь треугольника.

Теорема Птолемея

Под конец, рассмотрим теорему Птолемея.

Теорема Птолемея гласит, что произведение диагоналей тождественно сумме произведений противоположных сторон вписанного четырехугольника.

AC \cdot BD = AB \cdot CD + BC \cdot AD

Инструкция

В случае, если известен только диаметр, то формула будет выглядеть как «R = D/2».

Если длина окружности неизвестна, но есть данные о длине определенного , то формула будет иметь вид «R = (h^2*4 + L^2)/8*h», где h – высота сегмента (является расстоянием от середины хорды до самой выступающей части указанной дуги), а L – длина сегмента (которая не является длиной хорды).Хорда – отрезок , которая соединяет две точки окружности .

Обратите внимание

Следует различать понятия «окружность» и «круг». Круг является частью плоскости, которая, в свою очередь, ограничивается окружностью определенного радиуса. Чтобы найти радиус, необходимо знать площадь круга. В таком случае уравнение будет иметь вид «R = (S/π)^1/2», где S является площадью. Чтобы вычислить площадь, в свою очередь следует знать радиус («S = πr^2»).

Зная лишь длину диаметра окружности, можно вычислить не только площадь круга, но и площади некоторых других геометрических фигур. Это вытекает из того, что диаметры вписанных или описанных вокруг таких фигур окружностей совпадают с длинами их сторон либо диагоналей.

Инструкция

Если надо найти площадь (S) по известной длине его диаметра (D), умножайте число пи (π) на возведенную в длину диаметра , а результат делите на четыре: S=π ²*D²/4. Например, круга равен двадцати сантиметрам, то его площадь можно вычислить так: 3,14² * 20² / 4 = 9,86 * 400 / 4 = 986 сантиметров.

Если надо найти площадь квадрата (S) по диаметру вокруг него окружности (D), возводите длину диаметра в квадрат, а результат разделите пополам: S=D²/2. Например, если диаметр описанной окружности равен двадцати сантиметрам, то площадь квадрата можно вычислить так: 20² / 2 = 400 / 2 = 200 квадратных сантиметров.

Если площадь квадрата (S) нужно найти по диаметру вписанной в него окружности (D), достаточно возвести длину диаметра в квадрат: S=D². Например, если диаметр вписанной окружности равен двадцати сантиметрам, то площадь квадрата можно вычислить так: 20² = 400 квадратных сантиметров.

Если надо найти площадь (S) по известным диаметра м вписанной (d) и описанной (D) вокруг него окружностей, то возводите длину диаметра вписанной окружности в квадрат и делите на четыре, а к результату прибавляйте половину произведения длин вписанной и описанной окружностей: S=d²/4 + D*d/2. Например, если диаметр описанной окружности равен двадцати сантиметрам, а вписанной – десяти сантиметрам, то площадь треугольника можно вычислить так: 10² / 4 + 20*10/2 = 25 + 100 = 125 квадратных сантиметров.

Используйте встроенный в поисковую систему Google для проведения необходимых расчетов. Например, чтобы с помощью этого поисковика площадь прямоугольного треугольника по данным примера из четвертого шага, надо ввести такой поисковый запрос: «10^2 / 4 + 20*10/2», а нажать клавишу Enter.

Источники:

  • как найти площадь окружности по диаметру

Круг - это плоская геометрическая фигура, все точки которой находятся на одинаковом и отличном от нуля удалении от выбранной точки, которую называют центром окружности. Прямую, соединяющую любые две точки круга и проходящую через центр, называют его диаметром . Суммарная длина всех границ двухмерной фигуры, которую обычно называют периметром, у круга чаще обозначается как «длина окружности». Зная длину окружности можно вычислить и ее диаметр.

Инструкция

Используйте для нахождения диаметра одно из основных свойств окружности, которое заключается в том, что соотношение длины ее периметра к диаметру одинаково для абсолютно всех окружностей. Конечно, постоянство не осталось не отмеченным математиками, и эта пропорция давно уже получила собственное - это число Пи (π - первая греческих слов «окружность » и «периметр»). Числовое этой определяется длиной окружности, у которой диаметр равен единице.

Используйте какой-либо , чтобы рассчитать длину диаметра, если сделать это в уме не получается. Например, можно воспользоваться тем, который встроен в поисковую систему Nigma или Google - он математические операции, вводимые на «человеческом» . Например, если известная длина окружности составляет четыре метра, то для нахождения диаметра можно «по-человечески» попросить поисковик: «4 метра разделить на пи». Но если вы введете в поле поискового запроса, например, «4/пи», то поисковик поймет и такую постановку задачи. В любом случае ответом будет «1.27323954 метра».

Воспользуйтесь программным калькулятором Windows, если вам более привычны интерфейсы с обычными кнопками. Чтобы не искать ссылку на его запуск в глубинных уровнях главного меню системы, нажмите сочетание клавиш WIN + R, введите команду calc и нажмите клавишу Enter. Интерфейс этой программы очень незначительно отличается от обычных калькуляторов, поэтому операция деления длины окружности на число Пи вряд ли вызовет какие-либо затруднения.

Вопрос о диаметре земного шара не так прост, как может показаться на первый взгляд, ведь само понятие «земной шар» весьма условно. У настоящего шара диаметр всегда будет одинаковым, в каком бы месте ни был проведен отрезок, соединяющий две точки на поверхности сферы и проходящий через центр.

Применительно к Земле не представляется возможным, поскольку ее шарообразность далеко не идеальна (в природе вообще не бывает идеальных геометрических фигур и тел, они представляют собой абстрактные геометрические понятия). Для точного обозначения Земли ученым даже пришлось ввести специальное понятие – «геоид».

Официальный диаметр Земли

Величина диаметра Земли определяется тем, в каком месте его будут измерять. Для удобства за официально признанный диаметр принимаются два показателя: диаметр Земли по экватору и расстояние между Северным и Южным полюсами. Первый показатель равен 12 756,274 км, а второй – 12 714, разница между ними составляет немногим менее 43 км.

Данные числа не производят особого впечатления, они уступают даже расстоянию между Москвой и Краснодаром – двумя городами, расположенными на территории одной страны. Тем не менее, вычислить их было непросто.

Вычисление диаметра Земли

Диаметр планеты высчитывается по такой же геометрической формуле, как и любой другой диаметр.

Чтобы найти периметр окружности, необходимо умножить ее диаметр на число πи. Следовательно, для нахождения диаметра Земли нужно измерить ее окружность в соответствующем сечении (по экватору или в плоскости полюсов) и разделить ее на число πи.

Первым человеком, попытавшимся измерить окружность Земли, был древнегреческий ученый Эратосфен Киренский. Он обратил внимание, что в Сиене (ныне – Асуан) в день летнего солнцестояния Солнце находится в зените, освещая дно глубокого колодца. В Александрии же в этот день оно отстояло от зенита на 1/50 окружности. Из этого ученый сделал вывод, что расстояние от Александрии до Сиена составляет 1/50 окружности Земли. Расстояние между этими городами равно 5 000 греческим стадиям (приблизительно 787,5 км), следовательно, окружность Земли равна 250 000 стадий (примерно 39 375 км).

В распоряжении современных ученых имеются более совершенные средства измерения, но их теоретическая основа соответствует идее Эратосфена. В двух точках, расположенных в нескольких сотнях километров друг от друга, фиксируют положение Солнца или определенных звезд на небосводе и вычисляют разницу между результатами двух измерений в градусах. Зная расстояние в километрах, несложно вычислить длину одного градуса, а затем умножить ее на 360.

Для уточнения размеров Земли используется и лазерная дальнометрия, и спутниковые системы наблюдения.

На сегодняшний день считается, что окружность Земли по экватору составляет 40 075,017 км, а по – 40 007,86. Эратосфен лишь немного ошибся.

Величина и окружности, и диаметра Земли увеличивается из-за метеоритного вещества, постоянно выпадающего на Землю, но процесс этот идет очень медленно.

Источники:

  • Как измерили Землю в 2019

Окружность представляет собой кривую линию, которая образована из всех точек, равноудаленных от одной определенной точки, которую называют центром окружности. По-другому можно дать такое определение окружности: кривая, которая замкнута на плоскости, и все точки которой, лежащие в той же плоскости, что и кривая, удалены от центра на одинаковое расстояние. Каждая точка окружности находится от центра окружности на одинаковом расстоянии.

Определение

Радиус — это отрезок прямой, который соединяет каждую точку окружности, которая находится на равном расстоянии от центра окружности, с центром окружности.

Диаметр — это отрезок прямой линии, который соединяет любые две удаленные друг от друга точки окружности и всегда должен проходить через центр этой окружности.

Сравнение

Радиусом называют отрезок прямой, который соединяет каждую точку окружности, которая находится на равном расстоянии от центра окружности, с центром окружности. Радиус обозначают буквой R. Он показывает длину этого отрезка. Центр окружности обозначается буквой O.

Диаметром называют отрезок прямой, который всегда должен проходить через центр окружности, и соединять две любые удаленные друг от друга точки окружности. Любой такой отрезок прямой называют диаметром и обозначают буквой D. Длину диаметра также обозначают буквой D.

Пусть точки A, B находятся на самой окружности, тогда отрезки OA, OB — это радиусы этой окружности.

Их длины равны: OB=OA.

BA = OB + OA , так как BA = D, а OA = OB = R , то D = 2R .

Диаметр будет равняться двум радиусам. D = 2R. Соответственно, радиус будет равняться половине диаметра: R = D/2.

Выводы сайт

  1. Диаметр всегда равняется удвоенному радиусу окружности.
  2. Радиус окружности равен половине диаметра этой окружности. R = D/2

Окружностью называют замкнутую, плоскую кривую, все точки которой, лежащие в одной плоскости, удалены на одинаковом расстоянии от центра.

Точка О является центром окружности, R является радиусом окружности — расстоянием от какой-нибудь точки окружности до центра. По определению все радиусы замкнутой

рис. 1

кривой имеют одинаковую длину.

Расстояние между двумя точками окружности называется хордой. Отрезок окружности, проходящий через ее центр и соединяющий две ее точки, называется диаметром. Середина диаметра является центром окружности. Точки окружности делят замкнутую кривую на две части, каждая часть носит название дуги окружности. Если концы дуги принадлежат диаметру, то такая окружность называется полуокружностью, длину которой принято обозначать π . Градусная мера двух окружностей, имеющих общие концы, составляет 360 градусов.

Концентрические окружности - это окружности, имеющие общий центр. Ортогональные окружности — это окружности, которые пересекаются под углом равным 90 градусов.

Плоскость, которую ограничивает окружность, называется кругом. Одна часть круга, которая ограничена двумя радиусами и дугой — это круговой сектор. Дуга сектора - это дуга, ограничивающая сектор.

Рис. 2

Взаимное расположение окружности и прямой (рис.2).

Окружность и прямая имеют две общие точки, если расстояние от прямой до центра окружности менее радиуса окружности. В таком случае прямая по отношению к окружности называется секущей.

Окружность и прямая имеют одну общую точку, если расстояние от прямой до центра окружности равно радиусу окружности. В таком случае прямая по отношению к окружности называется касательной к окружности. Их общая точка носит название точки касания окружности и прямой.

Основные формулы окружности:

  • C = 2πR , где C — длина окружности
  • R = С/(2π) = D/2 , где С/(2π) — длина дуги окружности
  • D = C/π = 2R , где D — диаметр
  • S = πR2 , где S — площадь круга
  • S = ((πR2)/360)α , где S — площадь кругового сектора

Окружность и круг получили свое название в Древней Греции. Уже в древности человека интересовали круглые тела, поэтому окружность становилась венцом совершенства. То, что круглое тело могло двигаться само по себе, стало толчком к изобретению колеса. Казалось бы, что особенного в этом изобретении? Но представьте, если в одно мгновение колеса исчезнут из нашей жизни. В дальнейшем это изобретение и породило математическое понятие окружности.

Что такое определение? Что такое центр, радиус, хорда и диаметр окружности?

  1. класс
  2. Диаметор-отрезок соеденяющий две точки на окружности и проходящий через центор окружности,
  3. Окружность геометрическое место точек плоскости, равноудалнных от заданной точки, называемой центром, на заданное ненулевое расстояние, называемое е радиусом
    Радиус не только величина расстояния, но и отрезок, соединяющий центр окружности с одной из е точек
    Отрезок, соединяющий две точки окружности, называется е хордой. Хорда, проходящая через центр окружности, называется диаметром
    Диаметр это хорда (отрезок, соединяющий две точки) на окружности (сфере, поверхности шара) , и проходящий через центр этой окружности (сферы, шара) . Также диаметром называют длину этого отрезка. Диаметр окружности является хордой, проходящей через е центр; такая хорда имеет максимальную длину. По величине диаметр равен двум радиусам.
  4. определение опознается по наличию во фразе слова НАЗЫВАЕТСЯ, те это разъяснение некоторого понятия. свойства которого начинают изучать 9 большинство Проходит.... мимо)
    окружностью называется
    геометрическая фигура. состоящая из точек плоскости. находящихся на одинаковом расстоянии от одной точки. называемой центром окр.
    радиус - отрезок. соединяющий центр окружности с любой точкой окружности.
    хорда- отрезок. соединяющий 2 точки окружности
    диаметр - хорда. проходящая через центр окружности. длина диаметра равна длине 2 радиусов.

    УЧЕБНИК украли злые люди?
    доступ в поиск заблокировали старшие товарищи?

  5. Центр - это точка, все точки окр-сти от которой находятся на одинаковом расстоянии.
    радиус - отрезок от центра до любой точки на окр.
    Диаметр - отрезок, соединяющий две точки на окружности и проходящий через центр.
    Хорда - отрезок, соединяющий две точки окружности. Не обязательно проходит через центр. Удачи! ! Все просто))
  6. Домашнее задание (09.02.2016 г.)
    Данное домашнее задание необходимо выполнять на формате А4
    Прочитать параграф 22 Окружность. Длина окружности.
    Записать определение окружности, центра, радиуса и диаметра окружности (используя Интернет или любой справочник по математике).
    Начертить рисунок 87(б) стр. 146, со страницы 147 записать две формулы для нахождения длины окружности через радиус и диаметр окружности. Запишите значение числа.
    Выполните контрольные задание 2, 3, 4 на странице 153 учебника.
    Прочитать параграф 23 Круг. Площадь круга.
    Записать определение круга (стр. 153).
    Начертить круг, отметить центр, радиус и диаметр круга.
    Записать две формулы для нахождения площади круга через радиус и диаметр круга:
    ;
    675(в, г), 676(в, г), 678(в, г. Изображать круг не надо, необходимо найти диаметр и радиус).
    Прочитать параграф 23 Шар. Сфера.
    Заполнить таблицу

    Предметы, имеющие форму сферы
    (название и рисунок предмета) Предметы, имеющие форму шара (название и рисунок предмета)
    1
    2
    3

    Начертить рисунок 103 страница 158, записать формулы для объема шара и площади сферы (страница 158)
    690, 691, 692. попробуйте решить

  7. ееееееееееееееееееееееееееееееееееее