Эмпирический и теоретический уровни научного познания.

Главенствующую роль в системе получения человеком знаний об окружающей действительности всегда играло эмпирическое познание. Во всех сферах человеческой жизни считается, что знания могут успешно применяться на практике только в том случае, если они благополучно опробованы экспериментальным путем.

Суть эмпирического познания сводится к непосредственному получению информации об объектах изучения от органов чувств познающего человека.

Чтобы представить себе, чем является эмпирический способ познания в системе получения человеком знаний, необходимо понимать, что вся система изучения объективной реальности является двухуровневой:

  • теоретический уровень;
  • эмпирический уровень.

Теоретический уровень познания

Теоретическое познание строится на формах, характерных для абстрактного мышления. Познающий оперирует не исключительно точными сведениями, полученными в результате наблюдения объектов окружающей действительности, а создает обобщающие конструкции на основе исследований «идеальных моделей» данных объектов. Такие «идеальные модели» лишены тех свойств, которые, по мнению познающего, являются несущественными.

В результате теоретических исследований человек получает информацию о свойствах и формах идеального объекта.

На основании этих сведений строятся прогнозы и проводится мониторинг конкретных явлений объективной реальности. В зависимости от расхождений идеальных и конкретных моделей обосновываются определенные теории и гипотезы для проведения дальнейших исследований с применением разных форм познания.

Характеристика эмпирического познания

Подобный порядок изучения объектов является основой всех видов человеческого познания: научного, обыденного, художественного и религиозного.

Презентация: "Научное познание"

Но особенно строгим и обоснованным является упорядоченное соотношение уровней, методов и способов в научных исследованиях, поскольку для науки исключительно важна методология получения знаний. Во многом именно от научных методов, применяемых для изучения того или иного предмета, зависит, будут ли выдвинутые теории и гипотезы являться научными или не будут.

За исследование, развитие и применение методов научного познания отвечает такой раздел философии, как гносеология.

Научные методы делятся на теоретические методы и эмпирические методы.

Эмпирические научные методы

Это те инструменты, при помощи которых человек формирует, запечатлевает, измеряет и обрабатывает информацию, полученную по время исследований конкретных объектов окружающей действительности во время проведения научных исследований.

Эмпирический уровень научного познания обладает следующими инструментами-методами:

  • наблюдение;
  • эксперимент;
  • исследования;
  • измерение.

Каждый из этих инструментов является необходимым для проверки теоретических познаний на объективную достоверность. Если теоретические выкладки не могут быть подтверждены на практике, их нельзя брать в основу хоть каких-то научных положений.

Наблюдение как эмпирический метод познания

Наблюдение пришло в науку из . Именно успешность применения человеком наблюдений за явлениями окружающей среды в своей практической и житейской деятельности, является основой для разработки соответствующего метода научного познания.

Формы научного наблюдения:

  • непосредственное – при котором не применяются специальные приборы, технологии и средства;
  • опосредованное – с использованием измерительных или других специальных устройств и технологий.

Обязательными процедурами наблюдения являются фиксация результатов и многократность наблюдений.

Именно благодаря этим процессам ученые получают возможность не только систематизировать, но и обобщать информацию, полученную при наблюдениях.

Примером непосредственного наблюдения является регистрация состояния исследуемых групп животных в данную конкретную единицу времени. Используя непосредственные наблюдения, ученые-зоологи исследуют социальные аспекты жизни групп животных, влияние этих аспектов на состояние организма конкретного животного и на ту экосистему, в которой обитает данная группа.

Примером опосредованного наблюдения является мониторинг астрономами состояния небесного тела, измерение его массы и определение химического состава.

Получение знаний через эксперимент

Проведение эксперимента – один из самых ответственных этапов построения научной теории. Именно благодаря эксперименту проверяются гипотезы и устанавливается наличие или отсутствие причинных связей между двумя явлениями (феноменами). Феномен не является чем-то абстрактным или предполагаемым. Этим термином называют наблюдаемое явление. Наблюдаемый ученым факт роста лабораторной крысы является феноменом.

Отличие эксперимента от наблюдений:

  1. При эксперименте явление объективной реальности происходит не само по себе, а исследователь создает условия для его появления и динамики. При наблюдении же наблюдатель регистрирует исключительно то явление, которое является самостоятельно воспроизводимым окружающей средой.
  2. Исследователь может вмешиваться в ход событий явлений эксперимента в рамках, определенных правилами его проведения, тогда как наблюдатель не может каким-то образом регулировать наблюдаемые события и явления.
  3. Во время проведения эксперимента исследователь может подключать или исключать те или иные параметры проведения эксперимента, чтобы установить связи между исследуемыми явлениями. Наблюдатель, который должен установить порядок протекания явлений в естественных условиях, не имеет права использовать искусственную регулировку обстоятельств.

По направлению исследований выделяется несколько видов экспериментов:

  • Физический эксперимент (изучение явлений природы во всем их многообразии).

  • Компьютерный эксперимент с математической моделью. В этом эксперименте по одним параметрам модели определяют другие параметры.
  • Психологический эксперимент (изучение обстоятельств жизнедеятельности объекта).
  • Мысленный эксперимент (эксперимент проводится в воображении исследователя). Зачастую этот эксперимент имеет не только основную, но и вспомогательную функцию, поскольку призван определить основной порядок и проведение эксперимента в реальных условиях.
  • Критический эксперимент. Содержит в своей структуре необходимость проверки данных, полученных при проведении определенных исследований, для проверки их на соответствие тем или иным научным критериям.

Измерение – метод эмпирического познания

Измерение – одно из самых обыденных занятий человека. Чтобы получить информацию об окружающей действительности, мы ее измеряем разными способами, в разных единицах, при помощи различных устройств.

Наука, как одна из сфер человеческой деятельности, также совершенно не может обходиться без измерений. Это один из самых важных методов получения знаний об объективной реальности.

В связи с повсеместностью измерений, существует огромное количество их видов. Но все они направлены на получение результата – количественного выражения свойств того или иного объекта окружающей действительности.

Научное исследование

Метод познания, который заключается в обработке информации, полученной в результате экспериментов, измерений и наблюдений. Сводится к построению концепций и проверке выстроенных научных теорий.

Основными видами исследований являются фундаментальное и прикладное исследование.

Цель фундаментальных разработок – исключительно получение новых знаний о тех явлениях объективной реальности, которые входят в предмет изучения данной науки.

Прикладные разработки генерируют возможность применения новых знаний на практике.

В связи с тем, что исследования – основная деятельность научного мира, направленная на получение и внедрение новых знания, она жестко регламентирована, в том числе и этическими правилами, которые не позволяют обращать исследования во вред человеческой цивилизации.

Различают два уровня научного познания – эмпирический и теоретический.

Эмпирический уровень научного познания направлен на исследование явлений (иными словами, форм и способов проявления сущности объектов, процессов, отношений), он формируется при использовании таких методов познания, как наблюдение, измерение, эксперимент. Основные формы существования эмпирического знания – группировка, классификация, описание, систематизация и обобщение результатов наблюдения и эксперимента.

Эмпирическое знание имеет довольно сложную структуру, включающую в себя четыре уровня.

Первичный уровень – единичные эмпирические высказывания, содержанием которых является фиксация результатов единичных наблюдений; при этом фиксируется точное время, место и условия наблюдения.

Второй уровень эмпирического знания – научные факты, точнее – описание фактов действительности средствами языка науки. При помощи таких средств утверждается отсутствие или наличие некоторых событий, свойств, отношений в исследуемой предметной области, а также их интенсивность (количественная определенность). Их символическими представлениями являются графики, диаграммы, таблицы, классификации, математические модели.

Третий уровень эмпирического знания –эмпирические закономерности различных видов (функциональные, причинные, структурные, динамические, статистические и т.д.).

Четвертый уровень эмпирического научного знания – феноменологические теории как логически взаимосвязанное множество соответствующих эмпирических законов и фактов (феноменологическая термодинамика, небесная механика И. Кеплера, периодический закон химических элементов в формулировке Д. И. Менделеева и др.). От теорий в подлинном смысле этого слова эмпирические теории отличаются тем, что они не проникают в сущность исследуемых объектов, а представляют собой эмпирическое обобщение наглядно воспринимаемых вещей и процессов.

Теоретический уровень научного познания направлен на исследование сущности объектов, процессов, отношений и опирается на результаты эмпирического познания. Теоретическое знание есть результат деятельности такой конструктивной части сознания, как разум. В качестве ведущей логической операции теоретического мышления выступает идеализация, целью и результатом которой является конструирование особого типа предметов – "идеальных объектов" научной теории (материальная точка и "абсолютно черное тело" в физике, "идеальный тип" в социологии и др.). Взаимосвязанная совокупность такого рода объектов образует собственный базис теоретического научного знания.

Этот уровень научного познания включает в себя постановку научных проблем; выдвижение и обоснование научных гипотез и теорий; выявление законов; выведение логических следствий из законов; сопоставление друг с другом различных гипотез и теорий, теоретическое моделирование, а также процедуры объяснения, понимания, предсказания, обобщения.

В структуре теоретического уровня выделяют целый ряд компонентов: законы, теории, модели, концепции, учения, принципы, совокупность методов. Кратко остановимся на некоторых из них.

В законах науки отображаются объективные, регулярные, повторяющиеся, существенные и необходимые связи и отношения между явлениями или процессами реального мира. С точки зрения области действия все законы условно можно разделить на следующие виды.

1. Универсальные и частные (экзистенциальные) законы. Универсальные законы отображают всеобщий, необходимый, строго повторяющийся и устойчивый характер регулярной связи между явлениями и процессами объективного мира. Примером может служить закон теплового расширения тел: "Все тела при нагревании расширяются".

Частные законы представляют собой связи, либо выведенные из универсальных законов, либо отображающие регулярность событий, характеризующих некоторую частную сферу бытия. Так, закон теплового расширения металлов является вторичным, или производным, по отношению к универсальному закону теплового расширения всех физических тел и характеризует свойство частной группы химических элементов.

  • 2. Детерминистические и стохастические (статистические) законы. Детерминистические законы дают предсказания, имеющие вполне достоверный и точный характер. В отличие от них стохастические законы дают лишь вероятностные предсказания, они отображают определенную регулярность, которая возникает в результате взаимодействия случайных массовых или повторяющихся событий.
  • 3. Эмпирические и теоретические законы. Эмпирические законы характеризуют регулярности, обнаруживаемые на уровне явления в рамках эмпирического (опытного) знания. Теоретические законы отражают повторяющиеся связи, действующие на уровне сущности. Среди этих законов наиболее распространенными являются каузальные (причинные) законы, которые характеризуют необходимое отношение между двумя непосредственно связанными явлениями.

По своей сути научная теория представляет собой единую, целостную систему знания, элементы которой: понятия, обобщения, аксиомы и законы – связываются определенными логическими и содержательными отношениями. Отражая и выражая сущность исследуемых объектов, теория выступает как высшая форма организации научного знания.

В структуре научной теории выделяют: а) исходные фундаментальные принципы; б) основные системообразующие понятия; в) языковой тезаурус, т.е. нормы построения правильных языковых выражений, характерных для данной теории; г) интерпретационную базу, позволяющую перейти от фундаментальных утверждений к широкому полю фактов и наблюдений.

В современной науке выделяют типы научных теорий, которые классифицируются по различным основаниям.

Во-первых, по адекватности отображения исследуемой области явлений различают феноменологические и аналитические теории. Теории первого рода описывают действительность на уровне явлений, или феноменов, не раскрывая их сущности. Так, геометрическая оптика изучала явления распространения, отражения и преломления света, не раскрывая природы самого света. В свою очередь, аналитические теории раскрывают сущность исследуемых явлений. Например, теория электромагнитного поля раскрывает сущность оптических явлений.

Во-вторых, по степени точности предсказаний научные теории, как и законы, разделяют на детерминистические и стохастические. Детерминистические теории дают точные и достоверные предсказания, но в силу сложности многих явлений и процессов, наличия в мире значительной доли неопределенности и случайностей, такие теории применяются достаточно редко. Стохастические теории дают вероятностные предсказания, основанные на изучении законов случая. Такие теории применяются не только в физике или биологии, но и в социально-гуманитарных науках, когда делаются предсказания или прогнозы о процессах, в которых значительную роль играет неопределенность, стечение обстоятельств, связанных с проявлением случайностей массовых событий.

Важное место в научном познании на теоретическом уровне занимает совокупность методов, среди которых выделяются аксиоматический, гипотетико-дедуктивный, метод формализации, метод идеализации, системный подход и др.

Рассматривая конкретные методы научного познания, следует понимать, что умение использовать эти методы всегда предполагает наличие специализированных знаний. Это важно учитывать потому, что любые формы и виды научной деятельности обязательно предполагают соответствующую подготовку тех специалистов, которые ею занимаются . Эмпирические методы познания – в том числе даже самый «простой» из них – наблюдение – для своего проведения предполагает, во-первых, наличие определенных теоретических знаний, а, во-вторых, использование специального и часто очень сложного оборудования. Кроме этого, проведение любых научных исследований всегда предполагает наличие определенной проблемной ситуации, в целях разрешения которой и проводятся эти исследования . Поэтому эмпирические методы научного познания – это совсем не то же самое, что и относительно похожие способы изучения реальности, которые проводятся с точки зрения здравого смысла и в рамках обыденно-практической установки.

К эмпирическим методам научного познания относятся:

1. Наблюдение;

2. Эксперимент;

3. Измерение.

Среди названных методов научного познания наблюдения является относительно самым простым методом, так как, например, измерение, предполагая проведение дополнительных процедур, в качестве своей основы обязательно предполагает и соответствующее наблюдение.

Наблюдение

Научное наблюдение – это целенаправленное восприятие предметов, явлений и процессов, как правило, окружающего мира. Отличительная особенность именно наблюдения состоит в том, что это метод пассивной регистрации тех или иных фактов действительности. Среди видов научных наблюдений можно выделить следующие:

В зависимости от цели наблюдения можно разделить на проверочные и поисковые ;

По характеру существования того, что исследуется, наблюдения можно разделить на наблюдения предметов, явлений и процессов, которые существуют объективно , т.е. вне сознания наблюдателя, и интроспекцию, т.е. самонаблюдение ;

Наблюдение объективно существующих предметов принято делить на непосредственные и косвенные наблюдения.

В рамках разных наук роль и место метода наблюдения разная. В некоторых науках наблюдение – это практически единственный способ получения исходных достоверных данных. В частности, в астрономии. Хотя эта наука по существу является прикладным разделом физики и поэтому она основывается на теоретических представлениях этой фундаментальной естественной науки, однако многие данные, которые актуальны именно для астрономии, могут быть получены только посредством наблюдения. Например, знания об объектах, которые расположены на расстоянии нескольких световых лет. Для социологии наблюдение – это также один из основных методов эмпирического научного познания.



Научное наблюдение для своего успешного проведения предполагает наличие проблемной ситуации, а также соответствующего концептуально-теоретического обеспечения. В основе научного наблюдения, как правило, лежит какая-либо гипотеза или теория, для подтверждения или опровержения которой и проводится соответствующее наблюдение . Роль и место концептуальных факторов в научном наблюдении, а также специфику их конкретных видов можно показать с помощью следующих примеров.

Как известно, люди наблюдали движение объектов на небе с незапамятных времен и в результате этого пришли к вполне естественному в рамках здравого смысла выводу о том, что Земля с находящимися на ней наблюдателями стоит неподвижно, а вокруг нее по правильным круговым орбитам равномерно двигаются планеты. Для того чтобы объяснить, почему эти планеты не падают на Землю, а парят в пространстве, было высказано предположение, что Земля находится внутри нескольких прозрачных стеклоподобных сфер, в которые как бы вкраплены планеты и звезды. Вращение этих сфер вокруг своей оси, которая совпадает с центром нашей планеты, приводит к тому, что поверхность сфер начинает двигаться, увлекая за собой прочно закрепленные на ней планеты.

Хотя это представление является совершенно неверным, однако оно вполне согласуется с соответствующей логикой здравого смысла, согласно которой для того, чтобы тело постоянно двигалось и никогда не падало, оно должно за что-либо держаться (в данном случае, быть прикрепленным к прозрачным сферам). Представление о том, что возможно постоянное движение тела по замкнутой траектории без того, чтобы его кто-либо поддерживал, для мышления в рамках здравого смысла соответствующей эпохи кажется невероятным. Следует заметить, что, по своему, здравый смысл «прав»: дело в том, что, действительно, в рамках естественного, обыденного и дотеоретического восприятия движения тел на Земле мы не видим ничего, чтобы могло бы все время перемещаться по замкнутой траектории, паря и не касаясь чего-либо, и при этом не падать. Ньютон, который открыл закон всемирного тяготения, естественно тоже наблюдал движение различных земных и космических тел, в том числе, и Луны. Однако он не просто смотрел на них, но использовал наблюдения для того, чтобы на их основе понять то, что увидеть нельзя. А именно: сопоставив данные скорости движения Луны вокруг Земли и их расстояния между собой с характеристиками движения падающих на Землю тел, он пришел к выводу, что за всем этим скрыта единая и общая закономерность, которая и получила название «закона тяготения».

Данный пример можно рассматривать как случай поискового наблюдения, результатом которого стала формулировка соответствующего закона. Целью поискового наблюдения является сбор фактов как первичного эмпирического материала, на основе анализа которого может быть выделено общее и существенное. Проверочное наблюдение отличается от поискового тем, что здесь конечной целью является не поиск нового теоретического знания, а проверка уже существующего. Проверочное наблюдение – это попытка верификации или опровержения какой-либо гипотезы. Примером такого наблюдения является, допустим, попытка убедиться в том, что закон тяготения носит действительно всемирный характер, т.е. что его действие распространяется на взаимодействие любых массивных тел. Из этого закона, в частности, следует, что чем меньше масса взаимодействующих тел, тем меньше и сила притяжения между ними. Поэтому если мы сможем наблюдать, что сила притяжения у поверхности Луны меньше аналогичной силы у поверхности Земли, которая тяжелее Луны, то из этого следует, что данное наблюдение подтверждает закон тяготения. В ходе полета космонавтов можно наблюдать феномен невесомости, когда люди свободно парят внутри корабля, фактически не притягиваясь ни к одной его стенке. Зная, что масса космического корабля практически ничтожна по сравнению с массой планет, данное наблюдение можно рассматривать как еще одну проверку закона тяготения.

Рассмотренные примеры можно считать случаями непосредственных наблюдений объективно существующих объектов. Непосредственные наблюдения – это такие наблюдения, когда соответствующие объекты можно воспринимать непосредственно, видя их самих, а не только те действия, которые они оказывают на другие объекты. В отличие от непосредственных наблюдений косвенные наблюдения – это такие, когда сам объект исследования вообще не наблюдаем. Однако, несмотря на это в случае косвенного наблюдения все же можно видеть те действия, которые оказывает ненаблюдаемый объект на другие, наблюдаемые предметы. Необычное поведение или состояние наблюдаемых тел, которые нельзя объяснить, если предположить, что в действительности есть только непосредственно наблюдаемые тела и есть исходное условие для косвенного наблюдения. Анализируя особенности необычного поведения видимых объектов и сравнивая его со случаями обычного поведения этих объектов можно сделать определенные выводы о свойствах ненаблюдаемых объектов. Компонент необычности в поведении видимых тел и есть косвенное наблюдение того, что не наблюдаемо непосредственно. Примером косвенных наблюдений будет, допустим, ситуация, связанная с «броуновским движением», а также эмпирическая составляющая знаний о «черных дырах».

Броуновское движение – это постоянное движение мельчайших, но все же с помощью достаточного сильного микроскопа визуально наблюдаемых частиц какого-либо вещества в жидкости. В случае броуновского движения вполне естественен вопрос: какова причина наблюдаемого движения этих частиц? Отвечая на этот вопрос можно предположить, что есть и другие, невидимые частицы, которые сталкиваются с видимыми и тем самым толкают их. Как известно, причина броуновского движения в том, что визуально ненаблюдаемые с помощью оптического микроскопа объекты – атомы и молекулы – все время сталкиваются с наблюдаемыми частицами, заставляя их двигаться. Таким образом, хотя сами атомы и молекулы в оптическом диапазоне (видимый свет) вообще ненаблюдаемы, однако и до изобретения электронного микроскопа их отдельные свойства можно было наблюдать. Естественно, только косвенно.

Что касается «черных дыр», то их непосредственно наблюдать невозможно в принципе. Дело в том, что сила тяготения, которая действует в них, столь велика, что никакой предмет – в том числе, видимый свет – не может преодолеть притяжение этих объектов. Тем не менее, черные дыры можно наблюдать косвенно. В частности, в связи с характерным изменением картины звездного неба вблизи них (за счет искривления пространства гравитационными силами) или в том случае, когда черная дыра и самосветящийся объект (звезда) составляют единую систему, которая по законам механики вращается вокруг общего центра масс. В последнем случае необычное движение звезды по замкнутой траектории (ведь непосредственно наблюдаема только она) и будет случаем косвенного наблюдения черной дыры.

Интроспекция – это наблюдение человека за содержанием собственного сознания. В конце 40-х годов XX в. в США был проведено следующее исследование. Для того чтобы выяснить, возможно ли функционирование сознания в случае паралича тела, испытуемому ввели производное кураре, вещество которое парализует всю мускульную систему человека. Оказалось, что, несмотря на паралич мускулатуры (испытуемый был подключен к аппарату искусственного дыхания, так как самостоятельно дышать он не мог) способность к сознательной деятельности сохранилась. Испытуемый был в состоянии наблюдать за тем, что происходит вокруг него, понимал речь, запоминал события и размышлял о них. Из этого был сделан вывод, что психическая деятельность может осуществляться и при отсутствии какой-либо мышечной активности.

Данные, которые получены в результате наблюдения, могут претендовать на научный статус только в том случае, если будет признана их объективность. Существенным фактором этого является воспроизводимость однажды увиденного другими . Если, например, кто-либо заявит, что он наблюдает нечто, что другие в аналогичных условиях не наблюдают, то это будет достаточным основанием для того, чтобы не признать научный статус данного наблюдения. Если же некоторое «наблюдение» еще и противоречит известным и хорошо установленным закономерностям в области какой-либо сферы знания, то в этом случае со значительной долей уверенности можно сказать, что «наблюдаемого» факта в действительности вообще никогда и не существовало. Видимо, одним из самых широко известных случаев такого псевдонаблюдения можно считать историю с «Лох-Несским чудовищем».

Для придания наблюдению статуса научно значимого знания важным моментом является обоснование того, что наблюдаемый объект, те или иные его свойства существуют объективно , а не являются только результатом воздействия инструментария, который использует наблюдатель. Примером грубой ошибки можно считать случай, когда, допустим, камера фотографирует объект, который в действительности является не удаленным предметом экспонируемой панорамы, а артефактом, который случайно прилип к элементам оптической системы камеры (например, частичка пыли на объективе).

Проблема учета и минимизации влияния субъекта-исследователя на изучаемый объект характерна не только для естествознания, но также и для социальных наук. В частности, в рамках социологии существует понятие «включенного наблюдения », т.е. такого, когда исследователь, который собирает данные о некоторой социальной группе, при этом достаточно долгое время живет рядом или даже в составе этой группы. Последнее делается для того, чтобы те, кто является объектом наблюдения, привыкли к присутствию стороннего наблюдателя, не обращали на не него особого внимания и вели в его присутствии себя так, как они ведут обычно.

Эксперимент

Главное отличие эксперимента от наблюдения состоит в том, что это метод не пассивной регистрации данных, а такой способ познания действительности, где с целью исследования существующих связей и отношений целенаправленно организуется протекание соответствующих процессов и явлений . В ходе проведения эксперимента исследователь сознательно вмешивается в естественный ход событий для того, чтобы выявить хотя и существующую, но часто неочевидную взаимосвязь между изучаемыми явлениями. Эксперимент принято относить к эмпирическим методам познания потому, что здесь, как правило, предполагается манипулирование объективно существующими предметами и процессами материального мира, которые, естественно, можно наблюдать. Однако не в меньшей степени эксперимент связан и с определенными теоретическими представлениями. В основе любого эксперимента всегда лежит определенная гипотеза или теория, для подтверждения или опровержения которых и проводится соответствующий эксперимент.

Среди видов экспериментальных исследований можно выделить следующие:

С точки зрения цели проведения эксперименты также как и научные наблюдения можно разделить на проверочные и поисковые ;

В зависимости от объективных характеристик предметов, с помощью которых проводятся исследования, эксперименты можно разделить на прямые и модельные ;

Эксперимент называется прямым , когда объектом изучения является реально существующий предмет или процесс, и модельным , когда вместо самого предмета используется его, как правило, уменьшенная модель. Особой разновидностью модельных экспериментов является исследования математических моделей тех или иных предметов или процессов. Что касается «мысленных экспериментов » – т.е. таких, где реальное исследование вообще не проводится, а только воображается протекание некоторых процессов и явлений – то последние, строго говоря, не могут быть отнесены к области эмпирического познания, так как по своей сути они представляют разновидность теоретических исследований. Впрочем, во многих случаях на основании мысленного эксперимента может быть проведено и реальное опытное исследование, которое можно рассматривать как материализацию соответствующих теоретических представлений.

Для того чтобы понять роль эксперимента как метода научного познания необходимо себе представлять, что та действительность с которой имеет дело исследователь, изначально предстает перед ним не как строго и систематически организованная цепь отношений и причинно-следственных связей, а лишь как лишь более или менее упорядоченное целое, в рамках которого роль и влияние тех или иных факторов часто не вполне очевидна. Поэтому предварительным условием проведения эксперимента является формулировка гипотезы о том, как именно изучаемые факторы могут быть связаны между собой, а для того, чтобы эту предполагаемую взаимосвязь проверить, необходимо создать условия, чтобы исключить влияние других, относительно случайных и несущественных факторов , действие которых может скрывать или нарушать протекание исследуемых отношений. Например, на основе обыденного восприятия окружающего мира можно заметить, что более тяжелое тело падает на поверхность Земли быстрее, чем более легкое. Так происходит потому, что воздух атмосферы препятствует движению тел. Не зная этого, на основе одного только опыта обыденного наблюдения, предварительно обобщив его, можно прийти к «открытию» не существующей на самом деле зависимости: утверждению о том, скорость падения тела всегда зависит от их массы. В действительности такой связи как постоянной зависимости нет, так как массу Земли можно считать бесконечно большой величиной по сравнению с массой любого предмета, который мы в состоянии сбросить на нее. В силу этого скорость падения любого сбрасываемого тела зависит только от массы Земли. Но как это доказать? Галилей, с именем которого принято связывать начало применения эксперимента как метода научного познания, сделал это следующим образом. Он сбросил с высоты 60 м. (Пизанская башня) одновременно два предмета: мушкетную пулю (200 гр.) и пушечное ядро (80 кг.). Так как оба предмета упали на Землю одновременно, Галилей сделал вывод, что гипотеза о том, что скорость падения тела всегда связана с его массой, неверна.

Опыт Галилея – это пример прямого эксперимента с целью проверки (опровержения) неверной теории, согласно которой скорость падения всегда зависит от массы падающего тела. Несколько изменив исходные условия в опыте Галилея нетрудно организовать проведение такого эксперимента, результаты которого можно интерпретировать в качестве подтверждения теории тяготения. Например, если взять достаточно большую камеру, из которой предварительно был откачен весь воздух, и поместить туда неплотный комок ваты и свинцовый шарик, а затем заставить их падать внутри этой камеры, то в результате можно увидеть, что шарик и комок, имея существенно разные параметры массы, площади поверхности и плотности, тем не менее, в разряженной среде (в отсутствии воздуха) упадут одновременно. Этот факт и можно интерпретировать как подтверждение теории тяготения.

Следует заметить, что далеко не во всех случаях у ученых есть хорошее теоретическое обоснование для экспериментальных исследований. Особенность поисковых экспериментов связана с тем, что они проводятся, чтобы собрать необходимую эмпирическую информацию для построения или уточнения некоторого предположения или догадки . Наглядным примером такого типа исследований могут служить опыты Бенджамина Румфорда по изучению природы тепловых явлений. До создания молекулярно-кинетической теории теплоту считали своего рода материальной субстанцией. В частности, полагали, что нагревание тела связано с добавлением к нему этой субстанции, которую называли теплородом. Специалистам по обработке металла резанием во времена Румфорда было хорошо известно, что при сверлении металла образуется большое количество теплоты. Этот факт в рамках теории теплорода пытались объяснить тем, что при обработке металла теплород отделяется от него и переходит в металлическую стружку, которая образуется в результате сверления. Хотя такое объяснение и выглядит малоубедительным, однако ничего лучшего в тот период предложить не могли.

Румфорд естественно знал о факте сильного тепловыделения при сверлении, однако для того, чтобы его объяснить он проделал следующий эксперимент. Он взял специально затупленное сверло и с его помощью проделал отверстие. В результате выделилось еще больше тепла, чем при действии острым сверлом, но зато было просверлено гораздо меньшее отверстие и образовалось совсем немного опилок. На основании данного эксперимента был сделан вывод: увеличение тепла не связано с образованием опилок, в которые, как считалось, переходит субстанция теплорода. Причина тепла – это не высвобождение и переход особой материальной субстанции теплорода, а движение. Таким образом, эксперимент, проделанный Румфордом, способствовал пониманию того, что тепло – это характеристика определенного состояния вещества, а не что-то добавленное к нему.

Далеко не во всех случаях эксперимент является прямым взаимодействием с изучаемым объектом. Очень часто гораздо экономнее проводить исследование на уменьшенных моделях этих объектов . В частности, примерами таких исследований являются опыты по определению аэродинамических характеристик планера (корпуса) самолета или исследования величины сопротивления воды, которое существует при данных формах корпуса судна. Очевидно, что проведение таких исследований на моделях, соответственно, в аэродинамической трубе или в бассейне гораздо дешевле, чем эксперименты с реальными объектами. При этом, надо понимать, что уменьшенная модель – это не точная копия изучаемого объекта, так как физические эффекты, возникающие при обдуве или движений модели, не только количественно, но и качественно не тождественны тем, которые имеют место в случае полноразмерных объектов. Поэтому для того, чтобы полученные на модельных экспериментах данные могли быть использованы при проектировании полноразмерных объектов, они должны быть пересчитаны с учетом специальных коэффициентов.

В связи с распространением в настоящее время ЭВМ все более широкое распространение получают эксперименты с математическими моделями исследуемых объектов. Предпосылкой математического моделирования является квантификация каких-либо существенных свойств исследуемых объектов и тех закономерностей, которым подчиняются эти объекты. Исходные параметры математической модели – это свойства реально существующих объектов и систем, которые переведены в числовую форму. Процесс математического моделирования – это вычисление тех изменений, которые произойдут с моделью в случае изменения исходных параметров. В силу того, что таких параметров может быть очень много, для их расчета требуется большая затрата сил. Применение ЭВМ позволяет автоматизировать и существенно ускорить процесс соответствующих расчетов. Очевидными достоинствами математического моделирования является возможность получения (за счет обработки большого числа параметров) быстрого расчета возможных сценариев развития моделируемых процессов. Дополнительным эффектом такого вида моделирования является значительная экономия средств, а также минимизация других издержек. Например, проведение расчетов особенностей протекания ядерных реакций с помощью ЭВМ позволили отказаться от реальных испытаний ядерного оружия.

Наглядным и самым известным примером мысленного эксперимента является «корабль Галилея». Во времена Галилея полагали, что покой носит абсолютный характер, а движение – это лишь временный процесс перехода от одного состояния к другому под действием какой-либо силы. Стремясь опровергнуть это утверждение, Галилей представил себе следующее. Пусть человек, который находится в закрытом трюме равномерно движущегося корабля и поэтому ничего не знает о том, что происходит вне трюма, попытается ответить на вопрос: стоит ли корабль на месте или плывет? Размышляя над этим вопросом, Галилей пришел к выводу, что у находящегося в трюме при данных условиях нет никакого способа, для того чтобы узнать правильный ответ. А из этого следует, что равномерное движение неотличимо от покоя и, следовательно, нельзя утверждать, что покой – это естественное, как бы первичное, и поэтому соответствующее абсолютной системе отсчета состояние, а движение – это лишь момент покоя, нечто такое, что всегда сопровождается действием какой-либо силы.

Естественно, мысленный эксперимент Галилея нетрудно реализовать и в натурном исполнении.

Экспериментальные исследования могут проводиться не только в естественных, но и в социально-гуманитарных наука. . Например, в психологии, где на основе экспериментов получены данные, которые используются для обоснования предположений, которые, на первый взгляд, достаточно сложно верифицировать. В частности, до всяких специализированных исследований, на уровне обыденного восприятия взрослому человеку хорошо известно, что его психика отличается от психики ребенка.

Вопрос в том, насколько именно она отличается? Если, допустим, характеризуя уровень психического развития взрослого, используют такие понятия, как «личность» и «самосознание», то можно ли и в каком смысле использовать их для характеристики уровня психического развития ребенка? В каком возрасте, например, у человека уже есть самосознания, а когда его еще нет? На первый взгляд, здесь достаточно сложно сказать что-то определенное. Тем более что и сами эти понятия не являются такими, которые определены строго и однозначно.

Несмотря на эти трудности, психолог Жан Пиаже в своих работах достаточно убедительно показал, что маленький ребенок гораздо в меньшей степени способен к осознанному контролю собственных психических процессов, нежели взрослый. В результате ряда исследований Пиаже пришел к выводу, что дети в возрасте 7-8 лет практически не способны к интроспекции (без которой говорить о самосознании в том смысле, в каком им обладают взрослые люди, вряд ли возможно). Эта способность, по его мнению, постепенно формируется в возрастном промежутке между 7-8 и 11-12 годами. Такие выводы Пиаже сделал на основе ряда экспериментов, содержание которых сводилось к тому, что сначала детям предлагали несложную арифметическую задачу (с которой большинство детей может справиться), а затем просил их объяснить, как именно они пришли к соответствующему решению. По мнению Пиаже, наличие интроспективной способности можно признать существующей, если ребенок может провести ретроспекцию, т.е. способен правильно воспроизвести процесс собственного решения. Если он это сделать не может и пытается объяснить решение, отталкиваясь, например, от полученного результата, как если бы он знал его наперед, то это означает, что ребёнок не обладает интроспективной способностью в том смысле, как это присуще взрослым.

В рамках экономической науки тоже, вероятно, можно осмысленно говорить об экспериментальных исследованиях. В частности, если существует некоторая налоговая ставка, в соответствии с которой осуществляются платежи, но при этом часть налогоплательщиков стремиться занизить или скрыть свои доходы, то в рамках описываемой ситуации могут быть предприняты действия, которые можно назвать экспериментальными. Допустим, зная описываемое положение дел, соответствующие правительственные органы могут принять решение об уменьшении ставки налогового обложения, предполагая, что при новых условиях значительной части налогоплательщиков будет выгоднее платить налоги, нежели уклоняться от них, рискуя получить штрафы и другие санкции.

После введения новых ставок налогообложения необходимо сравнить уровень собираемых налогов с тем, который существовал при прежних ставках. Если окажется, что количество налогоплательщиков возросло, так как некоторые при новых условиях согласились выйти «из тени», и общее количество сборов тоже увеличилось, то полученная информация может быть использована для совершенствования работы налоговых органов. Если же окажется, что никаких изменений в поведении налогоплательщиков не произошло и общее количество собранных налогов упало, то эта информация также может быть использована в работе соответствующих органов, мотивируя их, естественно, к поиску каких-то других решений.

Измерение

Измерение – это нахождение отношение между некоторой величиной и другой, которая принята за единицу измерения . Результат измерения выражается, как правило, некоторым числом, благодаря чему становится возможным подвергнуть полученные результаты математической обработке. Измерение – это важный метод научного познания, так как посредством его можно получить точные количественные данные о величине и интенсивности и на основании этого даже иногда сделать предположения о природе соответствующих процессов или явлений.

Изменение как способ определения величины и интенсивности встречается уже на уровне обыденного восприятия мира. В частности, как субъективное переживание «равенства», «большей» или «меньшей» величины какого-либо явления или процесса по сравнению с другими случаями его проявления. Например, свет может восприниматься как более или менее яркий, а температура оцениваться по таким ощущениям, как «холодно», «очень холодно», «тепло», «жарко», «горячо» и т.п. Очевидным недостатком такого способа определения интенсивности является его субъективность и приблизительность . Впрочем, для уровня обыденного восприятия мира такой «шкалы» может быть достаточно, однако в рамках научного познания подобная приблизительность – это серьезная проблема. Причем настолько, что отсутствие способов и практики точных измерений может даже выступать в качестве одного из серьезных факторов, которые сдерживают научное и техническое развитие.

Понять значимость точных измерений можно, если, допустим, представить себе те задачи, которые должны решить конструкторы и технологи при создании сложного технического устройства (например, двигателя внутреннего сгорания). Для того, чтобы этот двигатель работал и при этом еще имел достаточно высокий КПД, необходимо, чтобы его детали – в частности, поршни и цилиндры – были сделаны с высокой точностью. Причем настолько, что зазор между стенками цилиндра и диаметром поршня должен быть в пределах только десятых долей миллиметра. В свою очередь, для того, чтобы изготовить эти детали двигателя, нужны станки, которые способны обрабатывать металл с такой высокой точностью. Если такой или приближающейся к ней точности при данном техническом оснащении достигнуть нельзя, то двигатель либо вообще не будет работать, либо его КПД будет столь низким, что его использование будет экономически нецелесообразно. То же самое можно сказать и в отношении любых других сколько-нибудь сложных технических устройств.

Квантификация отношений между теми или иными явлениями, которая достигается за счет их выражения в точной количественной форме (последнее находит свое проявление в строгой формулировке соответствующих законов природы посредством использования математических формул) – это не просто своеобразная форма записи данных, а особый способ выражения знания, имеющий при этом совершенно определенное эвристическое значение . В частности, выражение в такой форме широко известного закона всемирного тяготения, согласно которому между любыми двумя телами действует сила притяжения, пропорциональная произведению их масс и обратно пропорциональная квадрату расстояния между ними, ценно не просто как «точное знание», которое может быть представлено в виде компактной формулы . Эвристическая ценность этой и других формул состоит в том, что используя такую форму представления знаний, можно выполнить точный расчет для конкретной ситуации, подставив в формулу определенные значения. На основании соответствующих расчетов можно создать, допустим, самолет или ракету, которые смогут подняться в воздух и не упасть, вылететь за пределы земного притяжения и достигнуть запланированной цели.

Что касается конкретных объектов изменения , то для естественных наук огромное значение имеет умение, прежде всего, определить численные характеристики пространства и времени : величину, расстояние между объектами и длительность соответствующих процессов.

Измерить расстояние между двумя объектами – значит сравнить его с эталоном . До недавнего времени в качестве эталона использовалось тело, сделанное из твердого сплава , форма которого слабо изменялось при изменении внешних условий. В качестве единицы длины был выбран метр – отрезок, сравнимый с размерами человеческого тела. В большинстве случаев этот эталон не укладывается целое число раз на длине измеряемого отрезка. Поэтому оставшаяся длина измеряется при помощи 1/10, 1/100, 1/1000 и т.д. частей эталона. На практике многократное деление исходного эталона невозможно. Поэтому для повышения точности измерения и измерения малых отрезков потребовался эталон существенно меньших размеров, в качестве которого в настоящее время используются стоячие электромагнитные волны оптического диапазона .

В природе существуют объекты, значительно меньшие по размерам длин волн оптического диапазона – это многие молекулы, атомы, элементарные частицы. При их измерении возникает принципиальная проблема: объекты, размеры которых меньше длины волны видимого излучения, перестают отражать свет по законам геометрической оптики и, следовательно, перестают восприниматься в форме привычных зрительных образов. Для оценки размеров таких мелких объектов свет заменяют потоком каких-либо элементарных частиц . В этом случае величина объектов оценивается по так называемым сечениям рассеяния, определяемым отношением числа частиц, изменивших направление своего движения, к плотности падающего потока. Наименьшим расстоянием, известным в настоящее время, является характерный размер элементарной частицы: 10 -15 м. Говорить о меньших размерах бессмысленно.

При измерении расстояний, значительно превышающих 1 м, пользоваться соответствующим эталоном длины тоже оказывается неудобным. Для измерения расстояний, сравнимых с размерами Земли, применяют методы триангуляции и радиолокации . Метод триангуляции состоит в том, что, зная величины одной стороны треугольника и двух прилегающих к ней углов, можно рассчитать величины двух других сторон. Суть метода радиолокации состоит в измерении времени задержки отраженного сигнала, скорость распространения и время отправления которого известны. Однако для очень больших расстояний, например, для измерения расстояний до других галактик, указанные методы оказываются неприменимыми, так как отраженный сигнал оказывается слишком слабым, а углы, под которыми виден объект, оказываются практически неизмеримыми. На очень больших расстояниях наблюдаемыми оказываются только самосветящиеся объекты (звезды и их скопления). Расстояние до них оценивается исходя из наблюдаемой яркости. В настоящее время наблюдаемая часть Вселенной имеет размеры 10 24 м. Говорить о больших размерностях не имеет смысла.

Измерение длительности процесса означает сравнение его с эталоном . В качестве такого эталона удобно выбрать какой-либо периодически повторяющийся процесс а, например колебания маятника . За единицу измерения времени выбрали секунду – интервал, примерно равный периоду сокращения сердечной мышцы человека. Для измерения значительно более коротких периодов времени возникла необходимость в новых эталонах. В их роли выступали колебания кристаллической решетки и движение электронов в атоме . Еще меньшие периоды времени можно измерить, если сравнивать их со временем прохождения света через заданный промежуток. Поэтому наименьшим осмысленным интервалом времени является время прохождения света через минимально возможное расстояние.

При помощи маятниковых часов возможно измерение временных интервалов, значительно превосходящих 1 секунду, но и здесь возможности метода не беспредельны. Периоды времени, сравниваемые с возрастом Земли (10 17 сек.) обычно оцениваются по полураспаду атомов радиоактивных элементов. По современным представлениям, максимальный промежуток времени, о котором имеет смысл говорить, является возраст Вселенной, который оценивается периодом 10 18 сек. (для сравнения: человеческая жизнь длится около 10 9 сек.).

Описанные способы изменений пространства и времени и та точность, которая в этом достигнута, имеют большое теоретическое и практическое значение. В частности, экстраполяция назад во времени наблюдаемого и точно измеренного расширения Вселенной является одним из важных фактов, который приводят в пользу теории Большого взрыва. Благодаря возможности точных измерений получены данные о перемещении материков Земли относительно друга друга на величину примерно равную нескольким сантиметрам в год, что имеет важное значение для геологии.

Умение провести точное изменение имеет большое значение. Данные, которые могут быть получены в результате такого изменения, часто выступают в качестве существенного аргумента в пользу принятия или отклонения какой-либо гипотезы . Например, измерение О. Рёмером в XVII в. скорости света было важным аргументом в пользу признания того, что последний является естественным физическим процессом, а не чем-то иным, нематериальным, скорость чего «бесконечна», как думали в те и последующие времена многие. Способность точно измерить период прохождения светового луча в разные стороны с помощью специально сконструированного прибора (опыт Майкельсона – Морли в 1880 г.) была важным фактором, который во многом способствовал отказу от теории эфира в физике.

Измерение как метод научного познания имеет огромное значение не только для естественных и технических наук, но значим также и для сферы социально-гуманитарного познания . Исходя из собственного опыта все знают, что осмысленный материал запоминается быстрее, чем бессмысленный. Однако насколько? Психолог Герман Эббингауз установил, что осмысленный материал запоминается в 9 раз быстрее, чем бессмысленный. В настоящее время в рамках прикладной психологии измерения широко используются для оценки психических способностей человека.

Социолог Эмиль Дюркгейм на основе анализа статистических данных о числе самоубийств в различных странах Европы установил корреляцию между этим фактом и степенью интеграции между людьми в соответствующих социальных группах. Знание численности населения некоторой страны, динамика смертности и рождаемости – это важные статистические данные для целого ряда прикладных наук об обществе.

Велика роль измерений и статистических данных и для современной экономической науки, особенно в связи с широким использованием в ней математических методов. Например, численный учет спроса и предложения имеет важное значение в сфере маркетинговых исследований.

Такие эмпирические методы познания, как наблюдение, эксперимент и измерения играют огромную роль в современном научном познании и их использование неотделимо от соответствующих теоретических научных представлений. Именно это отличает их от обыденных эмпирических способов познания мира. Эмпирические методы значимы на всех этапах научного познания мира, так как получаемый посредством них материал используется как для подтверждения и опровержения соответствующих теоретических представлений, так и учитывается при их формулировке.

Одна из существенных особенностей, которая связана с современным этапом развития научных эмпирических методов познания, состоит в том, что для получения и проверки соответствующих результатов требуется чрезвычайно сложное и дорогостоящее оборудование . Видимо, можно сказать, что дальнейшее развитие естественных и технических наук во много определяется возможностью и способностью создавать это оборудование . Например, современные исследования в области фундаментальной физики столь дороги, что проводить их способны только некоторые страны, которые имеют специалистов соответствующего уровня и средства для того, чтобы, в частности, участвовать строительстве и эксплуатации такого сложного прибора для экспериментальных исследований, каким является недавно вступивший в строй большой адронный коллайдер.

Эмпирический уровень познания

Предметом исследования на эмпирическом уровне являются свойства, связи, отношения объекта, которые доступны чувственному восприятию. Следует отличать эмпирические объекты науки от объектов реальности, поскольку первые – это определенные абстракции, выделяющие в реальности некоторый ограниченный набор свойств, связей и отношений. Реальному же объекту присуще бесконечное число признаков, он неисчерпаем в своих свойствах, связях, отношениях. Именно это определяет гносеологическую направленность исследования на эмпирическом уровне – изучение явлений (феноменов) и поверхностных связей между ними и доминирование чувственного коррелята в исследовании.

Основная задача познания на эмпирическом уровне – получение исходной эмпирической информации об изучаемом объекте. Чаще всего для этого используются такие методы познания как наблюдение и эксперимент.

Знание, которое формируется в процессе эмпирических исследований – наблюдения, постановки и проведения экспериментов, сбора и описания наблюдаемых явлений и фактов, их эмпирической систематизации и обобщения – выражают в форме научного факта и эмпирического обобщения (закона).

Эмпирический закон является результатом индуктивного обобщения опытов и представляет собой вероятностно-истинное знание. Увеличение количества опытов само по себе не делает эмпирическую зависимость достоверным знанием, поскольку эмпирическое обобщение всегда имеет дело с неполным опытом.

Главной познавательной функцией, которую выполняет научное познание на эмпирическом уровне, является описание явлений.

Научное исследование не удовлетворяется описанием явлений и эмпирическим обобщением, стремясь раскрыть причины и сущностные связи между явлениями, исследователь переходит на теоретический уровень познания.

Средства и методы эмпирического исследования. Наблюдение и эксперимент, виды эксперимента

1. Наблюдение – планомерное, целенаправленное пассивное изучение предметов, опирающееся в основном на данные органов чувств. В ходе наблюдения мы получаем знания не только о внешних сторонах объекта познания, но и - в качестве конечной цели - о его существенных свойствах и отношениях.

Наблюдение может быть непосредственным и опосредованным различными приборами и другими техническими устройствами. По мере развития науки оно становится все более сложным и опосредованным. Наблюдение фиксирует и регистрирует факты, описывает объект исследования, обеспечивая эмпирическую информацию, необходимую для постановки новых проблем и выдвижения гипотез.

Основные требования, которые предъявляются к научному описанию, направлены на то, чтобы оно было возможно более полным, точным и объективным. Описание должно давать достоверную и адекватную картину самого объекта, точно отображать изучаемые явления. Важно, чтобы понятия, используемые для описания, всегда имели четкий и однозначный смысл. Важным моментом наблюдения является интерпретация его результатов - расшифровка показаний приборов и т.п.

2. Эксперимент – это метод познания, при котором явления изучаются в контролируемых и управляемых условиях. Субъект активно вмешивается в процесс исследования, воздействуя на изучаемый объект посредством специального инструментария и приборов, целенаправленно и фиксировано изменяет объект, выявляя новые его свойства. Благодаря этому исследователю удается изолировать объект от влияния побочных и затемняющих его сущность явлений и изучать явление в чистом виде; планомерно изменять условия протекания процесса; многократно воспроизводить ход процесса в строго фиксированных и поддающихся контролю условиях.

Основные особенности эксперимента: а) более активное (чем при наблюдении) отношение к объекту исследования, вплоть до его изменения и преобразования; б) возможность контроля за поведением объекта и проверки результатов; в) многократная воспроизводимость изучаемого объекта по желанию исследователя; г) возможность обнаружения таких свойств явлений, которые не наблюдаются в естественных условиях.

Виды (типы) экспериментов весьма разнообразны. Так, по своим функциям выделяют исследовательские (поисковые) , проверочные (контрольные), воспроизводящие эксперименты . По характеру объектов различают физические, химические, биологические, социальные и т.п. Существуют эксперименты качественные и количественные . Широкое распространение в современной науке получил мысленный эксперимент - система мыслительных процедур, проводимых над идеализированными объектами.

3. Сравнение - познавательная операция, выявляющая сходство или различие объектов (либо ступеней развития одного и того же объекта), т.е. их тождество и различия. Оно имеет смысл только в совокупности однородных предметов, образующих класс. Сравнение предметов в классе осуществляется по признакам, существенным для данного рассмотрения. При этом предметы, сравниваемые по одному признаку, могут быть несравнимы по другому.

Сравнение является основой такого логического приема, как аналогия (см. далее), и служит исходным пунктом сравнительно-исторического метода. Его суть - выявление общего и особенного в познании различных ступеней (периодов, фаз) развития одного и того же явления или разных сосуществующих явлений.

4. Описание - познавательная операция, состоящая в фиксировании результатов опыта (наблюдения или эксперимента) с помощью определенных систем обозначения, принятых в науке.

5. Измерени е - совокупность действий, выполняемых при помощи определенных средств с целью нахождения числового значения измеряемой величины в принятых единицах измерения.

Следует подчеркнуть, что методы эмпирического исследования никогда не реализуются "вслепую", а всегда "теоретически нагружены", направляются определенными концептуальными идеями.

Эмпирическое знание – первичное научное знание, которое получается при контакте с изучаемым объектом. Эмпирия (лат.) – опыт.

На негативном опыте (ошибках) учатся.

Эмпирическое знание – описательное.

Наука, 3 функции: описание, объяснение и предсказание.

Эмпирический уровень: объяснение отсутствует, но предсказывать можно (если видим, что медь расширяется при нагревании, то можно предсказать, что и другие металлы тоже).

Методы получения знания: эмпирическое исследование осуществляется при помощи наблюдения, эксперимента и измерения.

Наблюдение – присутствует не только при реальном контакте с объектом, но и в нашем воображении (знаковое наблюдение – чтение, математика).

Вначале наблюдение предшествуют познанию, мы формулируем проблему. Мы можем высказать гипотезу. Наблюдение в конце исследования носит проверочный характер нашей теории.

В структуру наблюдения включают: объект, наблюдатель, условия наблюдения, приборы (инструменты), базисные знания.

Научное наблюдение требует протоколирование всех явлений (чтобы учёного могли проверить).

Наблюдения: прямые (объект доступен) и косвенные (объект не доступен, доступны только его следы и т.п., которые он оставил).

Апробация (лат.) – одобрение (оно не от слова «проба»).

Измерение: прямое (измерение длины), косвенное (времени, температуры; температура – энергия движения молекул).

Измерение в науке проводится многократно. Так как все величины будут разные в измерении. Каждый конкретный результат – среднее значение (также считается погрешность).

Эксперимент – активное воздействие на объект. Задача: поиск (не знаем, что будет) или проверяем уже существующую гипотезу.

Эмпирическое знание имеет логическую форму понятия. Когда мы связываем два эмпирических понятия или явления, то получаем законом (чем больше объём, тем меньше давление и пр.).

Эмпирическое знание – первое и последнее научное знание (Конт, Мах, это мнение позитивистов).Теоретическое знание не содержит нового знания, по их мнению.

Но учёный не может быть эмпириком, так как использует язык (а язык абстрактен, он использует понятия, которые нельзя потрогать).

Факт – почти то же самое, что и теория (и то и другое – одно знание). Факт нуждается в интерпретации. Интерпретация факта вкладывает в него значение. У факта всегда много интерпретаций.

Структура факта: то, что мы переживаем (психологический компонент); то, что мы высказали (лингвистический компонент); само событие.

Факты, роль в науке: источник и проверка. Факты должны подтверждать знания. Пост позитивизм (Попер): факт не может подтверждать, но может опровергать теорию.

Локатор: любое научное знание – предположение (оно не может опровергаться и подтверждаться). Цель заменять старые предположения (догадки) новыми. А о том, что новые лучше старых мы «догадываемся».

Научные знания представляют собой сложную развивающуюся систему, в которой по мере эволюции возникают все новые уровни организации. Они оказывают обратное воздействие на ранее сложившиеся уровни знания и трансформируют их. В этом процессе постоянно возникают новые приемы и способы теоретического исследования, меняется стратегия научного поиска.

Существует два вида организации знания: эмпирический и теоретический. Соответственно можно выделить два типа познавательных процедур, порождающих эти знания.

Обращаясь к философскому аспекту этого вопроса необходимо отметить таких философов Нового Времени, как Ф.Бэкон, Т.Гоббс и Д.Локк. Фрэнсис Бэкон говорил, что путем, ведущим к знанию, является наблюдение, анализ, сравнение и эксперимент. Джон Локк полагал, что все наши знания мы черпаем из опыта и ощущений.

Различие эмпирического и теоретического уровней научного познания касается средств исследования, специфики методов и характера предмета исследования.

Рассмотрим средства эмпирического уровня научного познания. Эмпирическое исследование базируется на непосредственном практическом взаимодействии исследователя с изучаемым объектом. Оно предполагает осуществление наблюдений и экспериментальную деятельность. Поэтому средства эмпирического исследования необходимо включают в себя приборы, приборные установки и другие средства реального наблюдения и эксперимента.

В теоретическом же исследовании отсутствует непосредственное практическое взаимодействие с объектами. На этом уровне объект может изучаться только опосредованно, в мысленном эксперименте, но не в реальном.

Кроме средств, которые связаны с организацией экспериментов и наблюдений, в эмпирическом исследовании применяются и понятийные средства. Они функционируют как особый язык, который часто называют эмпирическим языком науки. Он имеет сложную организацию, в которой взаимодействуют собственно эмпирические термины и термины теоретического языка.

Смыслом эмпирических терминов являются особые абстракции, которые можно было бы назвать эмпирическими объектами. Их следует отличать от объектов реальности. Эмпирические объекты - это абстракции, выделяющие в действительности некоторый набор свойств и отношений вещей. Реальные объекты представлены в эмпирическом познании в образе идеальных объектов, обладающих жестко фиксированным и ограниченным набором признаков. Реальному же объекту присуще бесконечное число признаков.

Что же касается теоретического познания, то в нем применяются иные исследовательские средства. Здесь отсутствуют средства материального, практического взаимодействия с изучаемым объектом. Но и язык теоретического исследования отличается от языка эмпирических описаний. В качестве его основы выступают теоретические термины, смыслом которых являются теоретические идеальные объекты.

Особенности средств и методов двух уровней научного познания связаны со спецификой предмета эмпирического и теоретического исследования. На каждом из этих уровней исследователь может иметь дело с одной и той же объективной реальностью, но он изучает ее в разных предметных срезах, в разных аспектах, а поэтому ее видение, ее представление в знаниях будут даваться по-разному. Эмпирическое исследование в основе своей ориентировано на изучение явлений и зависимостей между ними. На этом уровне познания сущностные связи не выделяются еще в чистом виде, но они как бы высвечиваются в явлениях, проступают через их конкретную оболочку.

На уровне же теоретического познания происходит выделение сущностных связей в чистом виде. Сущность объекта представляет собой взаимодействие ряда законов, которым подчиняется данный объект. Задача теории как раз и заключается в том, чтобы, расчленив эту сложную сеть законов на компоненты, затем воссоздать шаг за шагом их взаимодействие и таким образом раскрыть сущность объекта.

Эмпирический и теоретический уровни различаются по методам исследования. С помощью эмпирических методов исследования осуществляется накопление, фиксация, обобщение и систематизация опытных данных, их статистическая и индуктивная обработка, в то время как, с помощью теоретических происходит формирование законов наук и теорий.

К эмпирическим методам исследования относят наблюдение, сравнение, измерение и эксперимент, к теоретическим – аналогию, идеализацию, формализацию и др.

Наблюдение - это целенаправленное систематическое восприятие объекта, доставляющее первичный материал для научного исследования. Целенаправленность - важнейшая характеристика наблюдения. Концентрируя внимание на объекте, наблюдатель опирается на имеющиеся у него некоторые знания о нем, без которых нельзя определить цель наблюдения. Наблюдение характеризуется также систематичностью, которая выражается в восприятии объекта многократно и в разных условиях, планомерностью, исключающий пробелы в наблюдении, и активностью наблюдателя, его способностью к отбору нужной информации, определяемой целью исследования.

Требования, предъявляемые к научным наблюдениям:

Четкая постановка цели наблюдения;
- выбор методики и разработка плана;
- системность;
- контроль за надежностью и корректностью результатов наблюдения;
- обработка, осмысление и истолкование полученного массива данных;
- Как метод научного познания наблюдение дает исходную информацию об объекте, необходимую для его дальнейшего исследования.

Важную роль в познании играют сравнение и измерение. Сравнение представляет собой метод сопоставления объектов с целью выявления сходства или различия между ними. Если объекты сравниваются с объектом, выступающим в качестве эталона, то такое сравнение называется измерением.

Наиболее сложным и эффективным методом эмпирического познания является эксперимент, опирающийся на другие эмпирические методы. Эксперимент - метод исследования объекта, при котором исследователь (экспериментатор) активно воздействует на объект, создает искусственные условия, необходимые для выявления определенных его свойств. Эксперимент предполагает применение определенных средств: приборов, инструментов, экспериментальных установок, характеризуется активным воздействием на объект, может быть повторен столько раз, сколько требуется для получения достоверных результатов.

Существуют два типа экспериментальных задач:

Исследовательский эксперимент, который связан с поиском неизвестных зависимостей между несколькими параметрами объекта;
- проверочный эксперимент, который применяется в случае, когда требуется подтвердить или опровергнуть те или иные следствия теории.

В эксперименте, как правило, используются приборы – искусственные или естественные материальные системы, принципы, работы которых нам хорошо известны. Т.е. в рамках нашего эксперимента уже фигурирует в материальной форме наше знание, некоторые теоретические представления. Без них невозможен эксперимент, по крайней мере, в рамках науки. Всякая попытка отделить эксперимент от теории знаний делает невозможным понимание его природы, познавания сущности.

Эксперименты и данные наблюдения.

Различие между данными наблюдения и эмпирическими фактами как особыми типамиэмпирического знания было зафиксировано еще в позитивистской философии науки 30-х годов. В это время шла довольно напряженная дискуссия относительно того, что может служитьэмпирическим базисом науки. Вначале предполагалось, что ими являются непосредственные результаты опыта - данные наблюдения. В языке науки они выражаются в форме особых высказываний - записей в протоколах наблюдения, так называемые протокольные предложения.

В протоколе наблюдения указывается, кто наблюдал, время наблюдения, описываются приборы, если они применялись в наблюдении.

Анализ смысла протокольных предложений показал, что они содержат не только информацию об изучаемых явлениях, но и, как правило, включают ошибки наблюдателя, наслоения внешних возмущающих воздействий, систематические и случайные ошибки приборов и т.п. Но тогда стало очевидным, что данные наблюдения, в силу того, что они отягощены субъективными наслоениями, не могут служить основанием для теоретических построений.

В ходе дискуссий было установлено, что такими знаниями выступают эмпирические факты. Именно они образуют эмпирический базис, на который опираются научные теории.

Уже сам характер фактофиксирующих высказываний подчеркивает их особый объективный статус, по сравнению с протокольными предложениями. Но тогда возникает новая проблема: как осуществляется переход от данных наблюдения к эмпирическим фактам и что гарантирует объективный статус научного факта?