Описание бактериофагов. Бактериофаги

Бактериофаги это вирусы, избирательно поражающие бактериальные клетки. Бактериофаги размножаются в бактериях и вызывают их растворение. Как правило бактериофаг состоит из белковой оболочки и генетического материала – одноцепочечной или двуцепочечной РНК. Размер частиц приблизительно от 20 до 200 нанометров.

Жизненный цикл бактериофага

  1. Фаг приближается к бактерии, и хвостовые нити связываются с рецепторными участками на поверхности бактериальной клетки.
  2. Хвостовые нити изгибаются и «заякоривают» шипы и базальную пластинку на поверхности клетки; хвостовой чехол сокращается, заставляя полый стержень входить в клетку; этому способствует фермент лизоцим, который находится в базальной пластинке; таким образом нуклеиновая кислота (ДНК или РНК) вводится внутрь клетки.
  3. Нуклеиновая кислота фага кодирует синтез ферментов фага, используя для этого белоксинтезирующий аппарат хозяина.
  4. Фаг тем или иным способом инактивирует ДНК и РНК хозяина, а ферменты фага совсем расщепляют её; РНК фага подчиняет себе клеточный аппарат.
  5. Нуклеиновая кислота фага реплицируется и кодирует синтез новых белков оболочки.
  6. Новые частицы фага, образовавшиеся в результате спонтаной самосборки белковой оболочки вокруг фаговой нуклеиновой кислоты; под контролем РНК фага синтезируется лизоцим.
  7. Лизис клетки: клетка лопается под воздействием лизоцима; высвобождается около 200-1000 новых фагов; фаги инфицируют другие бактерии.
  8. Стадии 1-7 по времени занимают около 30 минут; этот период называется латентным периодом.

Лечение бактериофагами

Бактериофаги используют для антибактериальной терапии, альтернативно приёму антибиотиков.

Очень важным свойством бактериофагов является их специфичность: бактериофаги лизируют культуры определенного вида, более того, существуют так наз. типовые бактериофаги, лизирующие варианты внутри вида.

Выявить бактериофаги можно путем нанесения содержащего бактериофаг материала на плотные питательные среды, засеянные газоном чувствительной бактериальной культуры. В том месте газона, куда попал бактериофаг, образуется стерильное пятно или бляшка – зона лизиса бактерий газона вследствие размножения бактериофага. Количество образовавшихся негативных колоний бактериофага соответствует количеству бактериофагов в материале.

Бактериофаги применяют для профилактики и лечения некоторых бактериальных инфекций. В последнее время интерес к ним возрос в связи с широким распространением лекарственно-устойчивых форм патогенных и условно-патогенных бактерий. Препараты бактериофагов выпускают в виде таблеток, мазей, аэрозолей, свечей, в жидком виде. Употребляют их для орошения, смазывания раневых поверхностей, вводят перорально, внутривенно и т.д.

У каждого обитателя Вселенной свое назначение: все в природе гармонично и взаимосвязано, все имеет свои логические связи и требует баланса, чтобы жить в равновесии и гармонии

Бактериофаги -(отбактерии и греч.fagos – пожиратель) – это особые представители царства вирусов.

Особенность бактериофагов в том, что они приспособились использовать для своего размножения клетки бактерий.

Эти маленькие создания потрясающе многообразны.

Вирусы бактериий, иначе называемые бактериофагами, – крупнейшая из известных групп вирусов.

Современная классификация бактериофагов включает 13 семейств, подразделенных более чем на 140 родов, которые содержат более 5300 видов фагов.

Применение современных электронных микроскопов позволило детально изучить строение фагов. Оказалось, что многие из них устроены сложнее, чем вирусы человека, животных и растений.

Как выглядят бактериофагии?

Они очень маленькие, самые мелкие – не имеют и клеточки. Размер фага 0,1-0,2 миллимикрона (миллионные доли миллиметра!), что примерно составляет 1/1000 часть от бактериальной клетки величиной около 5 микрон.

Выглядят фаги необычно. Есть среди них и такие, что похожи на маленькие космические станции: аккуратные кристаллы с четкими гранями, стоящие на ножках-фибриллах. Стенки «корпуса» кристалла выстроены из молекул белка, а внутри конструкции находится генная информация фага – ДНК или РНК

Где живут бактериофаги «на воле»?

У них очень разная морфология, и среда обитания. Они живут везде, где есть бактерии – в воде, в почве, в каплях дождя, на поверхностях предметов, овощей, фруктов, на шерсти животных, на коже человека и внутри организма.

Чем богаче среда микроорганизмами, тем больше в ней фагов. Особенно много фагов в черноземе и почвах, в которые вносились органические удобрения. В 1 мм3 обыкновенной воды – около миллиарда фагов.

Человек и Бактериофаг

Человек уже не пьет сырую воду из рек, не моется в естественных водоемах. Когда вода попадает в водопровод, то она обязательно проходит жесткую систему обработки хлорирования. И, фактически, все живые существа, которые живут в воде, гибнут.

Да, мы избавляемся от очень многих вредных микробов, но, к сожалению, мы избавляемся и от наших микро друзей.

Почему так страшно использовать антибиотики, когда они не показаны, когда человек еще не настолько болен, что ему нужны такие радикальные мощные средства? Потому что антибиотики затрагивают всю популяцию бактерий и нормофлору.

Бактериофаги – естественные ограничители популяции бактерий.

Каждый бактериофаг проникает в «свою» бактерию путем специального механизма и начинает там размножаться. Размножается он там до тех пор, пока не разорвет бактерию и не выйдет наружу. И тогда уже много бактериофагов начинают искать себе бактерии для того, чтобы в ней воспроизвестись.

От бактерии остаются лишь обломки, зато на свет появляются не менее 100-200 новых фагов, готовых к нападению. Цикл – время с момента заражения бактерии до выхода потомства – длится всего от 15 до 40 минут в зависимости от вида фага.

Фаги строго избирательны.

Ученые даже не стали присваивать фагам имена: гораздо удобнее называть фага по имени бактерии. Есть фаги стрептококковые, фаги дизентерийные, фаги стафилококковые и т.д., они существуют благодаря бактериям. Где есть бактерии, там есть и фаги: в почве, воде ручья, озера, внутри организма и на коже человека, животного.

В микромире фаги играют роль естественных ограничителей численности бактерий. Количество фагов колеблется в зависимости от количества бактерий.

Если количество нужных фагу бактерий снижается, то и фагов становится меньше, иначе им негде будет размножаться. Поэтому фаги ограничивают, но не уничтожают полностью популяцию бактерий.

Соотношение фагов и соответствующих бактерий находится в таком же балансе, как и соотношение хищников и грызунов в макромире.

Что говорят специалисты.

Прогноз инфекционистов: «Фаготерапия в скором времени станет прорывом в борьбе с инфекциями.

Прогноз иммунологов : «Фаготерапия займет ту нишу, где несостоятельна современная иммунотерапия»

Прогноз аналитиков : «В течение пяти лет производство бактериофагов станет одной из лидирующих отраслей в фармацевтической промышленности»

История бактериофагов.

1896 год -открытие бактериофагов Британским бактериологом Эрнестом Ханкин 1898 год – бактериофаги исследованы российским ученым Николаем Гамалея.В этом же году фаги стали использовать при лечении ран и различных инфекций. 1920-е годы – Феликс д"Эрель – канадский сотрудник Института Пастера (Париж) назвал бактериофаги «бактериофагами» и охарактеризовал их: «вирусы, размножающиеся в бактериях».

1940-е годы . Везде, кроме СССР разработки бактериофагов вычеркнуты из числа перспективных исследований. В СССР исследования продолжаются

Во всем мире популярность приобретает метод применения антибиотиков.

1980-е годы Эффективность лечения антибиотиками значительно понизилась Бактерии выработали лекарственную устойчивость.

Интерес к фаговой терапии возобновился

Начало 2000-х годов – Гленн Моррис – сотрудник Университета Мэриленд (США) совместно с НИИ бактериофагов, микробиологии и вирусологии в Тбилиси наладил испытания фаговых препаратов для получения лицензии на их применение в США. Июль 2007 года - бактериофаги одобрены для использования в США На протяжении последних нескольких лет исследования свойств бактериофагов проводятся в России, Грузии, Польше, Франции, Германии, Финляндии, Канаде, США, Великобритании, Мексике, Израиле, Индии, Австралии.

Изучение свойств фагов способствовало развитию концепции фаготерапии.

Преимущества Бактериофагов

  • действуют лишь на определенные бактерии,
  • не нарушают баланса высшего организма,
  • постоянно эволюционируют,
  • не ослабляют иммунитет,
  • не развивают устойчивость бактерий

Альтернатива антибиотикам

  • бактериофаги способны уничтожать бактерии, устойчивые к антибиотикам,
  • усложняют выработку бактерией механизма устойчивости,
  • хорошо проникают в ткани организма человека и животного,
  • не подавляют рост нормофлоры,
  • не вызывают побочных эффектов,
  • сочетаются с любыми лекарственными
  • препаратами, оказывают иммуностимулирующее действие.

В Ветеринарии

Профилактика и лечение бактериальных заболеваний птиц и животных
  • Лечение гнойно-воспалительных заболеваний слизистых глаз, полости рта
  • Профилактика гнойно-воспалительных осложнений при ожогах, ранениях, операционных вмешательствах

В Генной инженерии

Фаги- это идеальный объект для генетических манипуляций.
  • для трансдукции- естественной передачи генов между бактериями
  • как векторы, переносящие участки ДНК
С помощью фагов можно конструировать направленные изменения в геноме хозяйской ДНК.

В Пищевой промышленности

  • В массовом порядке фагосодержащими средствами уже обрабатывают готовые к употреблению продукты из мяса и домашней птицы.
  • В разработке – фаговый раствор для распыления на мясе и мясной продукции в убойных цехах.
  • Бактериофаги применяют в производстве продуктов питания из мяса, мяса птицы, сыров, растительной продукции, и пр.

В Сельском хозяйстве

  • Распыление фагопрепаратов для защиты растений и урожая от гниения и бактериальных заболеваний
  • Применение фагопрепаратов для защиты скота иптицы от инфекций и бактериальных заболеваний

Для Экологической безопасности

  • антибактериальная обработка семян и растений
  • очистка помещений пищеперерабатывающих предприятий
  • санитарная обработка рабочего пространства и оборудования
  • профилактика помещений больниц
  • проведение экологических мероприятий

Ещё в 1898 году, впервые наблюдал явление лизиса бактерий (сибиреязвенной палочки) под влиянием перевиваемого агента .

Также Феликс Д’Эрель выдвинул предположение, что бактериофаги имеют корпускулярную природу. Однако только после изобретения электронного микроскопа удалось увидеть и изучить ультраструктуру фагов. Долгое время представления о морфологии и основных особенностях фагов основывались на результатах изучения фагов Т-группы - Т1, Т2,…, Т7, которые размножаются на Е. coli штамма B. Однако с каждым годом появлялись новые данные, касающиеся морфологии и структуры разнообразных фагов, что обусловило необходимость их морфологической классификации.

Роль бактериофагов в биосфере

Бактериофаги представляют собой наиболее многочисленную, широко распространенную в биосфере и, предположительно, наиболее эволюционно древнюю группу вирусов . Приблизительный размер популяции фагов составляет более 10 30 фаговых частиц .

В природных условиях фаги встречаются в тех местах, где есть чувствительные к ним бактерии. Чем богаче тот или иной субстрат (почва, выделения человека и животных, вода и т. д.) микроорганизмами, тем в большем количестве в нём встречаются соответствующие фаги. Так, фаги, лизирующие клетки всех видов почвенных микроорганизмов, находятся в почвах. Особенно богаты фагами черноземы и почвы, в которые вносились органические удобрения.

Бактериофаги выполняют важную роль в контроле численности микробных популяций, в автолизе стареющих клеток, в переносе бактериальных генов, выступая в качестве векторных «систем» .

Действительно, бактериофаги представляют собой один из основных подвижных генетических элементов. Посредством трансдукции они привносят в бактериальный геном новые гены. Было подсчитано, что за 1 секунду могут быть инфицированы 10 24 бактерий . Это означает, что постоянный перенос генетического материала распределяется между бактериями, обитающими в сходных условиях.

Высокий уровень специализации, долгосрочное существование, способность быстро репродуцироваться в соответствующем хозяине способствует их сохранению в динамичном балансе среди широкого разнообразия видов бактерий в любой природной экосистеме. Когда подходящий хозяин отсутствует, многие фаги могут сохранять способность к инфицированию на протяжении десятилетий, если не будут уничтожены экстремальными веществами либо условиями внешней среды .

Строение бактериофагов

Бактериофаги различаются по химической структуре, типу нуклеиновой кислоты, морфологии и характеру взаимодействия с бактериями. По размеру бактериальные вирусы в сотни и тысячи раз меньше микробных клеток.

Типичная фаговая частица (вирион) состоит из головки и хвоста. Длина хвоста обычно в 2 - 4 раза больше диаметра головки. В головке содержится генетический материал - одноцепочечная или двуцепочечная РНК или ДНК с ферментом транскриптазой в неактивном состоянии, окруженная белковой или липопротеиновой оболочкой - капсидом , сохраняющим геном вне клетки .

Нуклеиновая кислота и капсид вместе составляют нуклеокапсид. Бактериофаги могут иметь икосаэдральный капсид, собранный из множества копий одного или двух специфичных белков. Обычно углы состоят из пентамеров белка, а опора каждой стороны из гексамеров того же или сходного белка. Более того, фаги по форме могут быть сферические, лимоновидные или плеоморфные . Хвост представляет собой белковую трубку - продолжение белковой оболочки головки, в основании хвоста имеется АТФаза, которая регенерирует энергию для инъекции генетического материала. Существуют также бактериофаги с коротким отростком, не имеющие отростка и нитевидные .

Большое количество выделенных и изученных бактериофагов определяет необходимость их систематизации. Классификация вирусов бактерий претерпевала изменения: основывалась на характеристике хозяина вируса, учитывались серологические, морфологические свойства, а затем строение и физико-химический состав вириона .

В настоящее время согласно Международной классификации и номенклатуре вирусов бактериофаги, в зависимости от типа нуклеиновой кислоты разделяют на ДНК- и РНК- содержащие.

По морфологическим характеристикам ДНК-содержащие фаги выделены в следующие семейства: Myoviridae, Siphoviridae, Podoviridae, Lipothrixviridae, Plasmaviridae, Corticoviridae, Fuselloviridae, Tectiviridae, Microviridae, Inoviridae Plectovirus и Inoviridae Inovirus.

Взаимодействие бактериофага с бактериальными клетками

Адсорбция бактериофагов на поверхности бактериальной клетки

По характеру взаимодействия бактериофага с бактериальной клеткой различают вирулентные и умеренные фаги . Вирулентные фаги могут только увеличиваться в количестве посредством литического цикла . Процесс взаимодействия вирулентного бактериофага с клеткой складывается из нескольких стадий: адсорбции бактериофага на клетке, проникновения в клетку, биосинтеза компонентов фага и их сборки, выхода бактериофагов из клетки .

Первоначально бактериофаги прикрепляются к фагоспецифическим рецепторам на поверхности бактериальной клетки. Хвост фага с помощью ферментов, находящихся на его конце (в основном лизоцима), локально растворяет оболочку клетки, сокращается и содержащаяся в головке ДНК инъецируется в клетку, при этом белковая оболочка бактериофага остается снаружи. Инъецированная ДНК вызывает полную перестройку метаболизма клетки: прекращается синтез бактериальной ДНК, РНК и белков. ДНК бактериофага начинает транскрибироваться с помощью собственного фермента транскриптазы, который после попадания в бактериальную клетку активируется. Синтезируются сначала ранние, а затем поздние иРНК, которые поступают на рибосомы клетки-хозяина, где синтезируются ранние (ДНК-полимеразы, нуклеазы) и поздние (белки капсида и хвостового отростка, ферменты лизоцим, АТФаза и транскриптаза) белки бактериофага. Репликация ДНК бактериофага происходит по полуконсервативному механизму и осуществляется с участием собственных ДНК-полимераз. После синтеза поздних белков и завершения репликации ДНК наступает заключительный процесс - созревание фаговых частиц или соединение фаговой ДНК с белком оболочки и образование зрелых инфекционных фаговых частиц .

Продолжительность этого процесса может составлять от нескольких минут до нескольких часов . Затем происходит лизис клетки, и освобождаются новые зрелые бактериофаги . Иногда фаг инициирует лизирующий цикл, что приводит к лизису клетки и освобождению новых фагов. В качестве альтернативы фаг может инициировать лизогенный цикл, при котором он вместо репликации обратимо взаимодействует с генетической системой клетки-хозяина, интегрируясь в хромосому или сохраняясь в виде плазмиды . Таким образом, вирусный геном реплицируется синхронно с ДНК хозяина и делением клетки, а подобное состояние фага называется профагом. Бактерия, содержащая профаг, становится лизогенной до тех пор, пока при определенных условиях или спонтанно профаг не будет стимулирован на осуществление лизирующего цикла репликации. Переход от лизогении к лизису называется лизогенной индукцией или индукцией профага. На индукцию фага оказывает сильное воздействие состояние клетки хозяина предшествующее индукции, также как наличие питательных веществ и другие условия, имеющие место в момент индукции. Скудные условия для роста способствуют лизогенному пути, тогда как хорошие условия способствуют лизирующей реакции .

Умеренные и вирулентные бактериофаги на начальных этапах взаимодействия с бактериальной клеткой имеют одинаковый цикл.

  • Адсорбция бактериофага на фагоспецифических рецепторах клетки.
  • Инъекция фаговой нуклеиновой кислоты в клетку хозяина.
  • Совместная репликация фаговой и бактериальной нуклеиновой кислоты.
  • Деление клетки.
  • Далее бактериофаг может развиваться по двум моделям: лизогенный либо литический путь. Умеренные бактериофаги после деления клетки находятся в состоянии профага (Лизогенный путь). Вирулентные бактериофаги развиваются по Литической модели:
  • Нуклеиновая кислота фага направляет синтез ферментов фага, используя для этого белоксинтезирующий аппарат бактерии. Фаг тем или иным способом инактивирует ДНК и РНК хозяина, а ферменты фага совсем расщепляют её; РНК фага «подчиняет» себе клеточный аппарат синтеза белка.
  • Нуклеиновая кислота фага реплицируется, и направляет синтез новых белков оболочки. Образуются новые частицы фага в результате спонтанной самосборки белковой оболочки (капсид) вокруг фаговой нуклеиновой кислоты; под контролем РНК фага синтезируется лизоцим.
  • Лизис клетки: клетка лопается под воздействием лизоцима; высвобождается около 200-1000 новых фагов; фаги инфицируют другие бактерии.

Применение

В медицине

Одной из областей использования бактериофагов является антибактериальная терапия, альтернативная приёму антибиотиков . Например, применяются бактериофаги: стрептококковый , стафилококковый , клебсиеллёзный , дизентерийный поливалентный, пиобактериофаг, коли, протейный и колипротейный и другие.

Бактериофаги применяются также в генной инженерии в качестве векторов , переносящих участки ДНК, возможна также естественная передача генов между бактериями посредством некоторых фагов (трансдукция).

Фаговые векторы обычно создают на базе умеренного бактериофага λ, содержащего двухцепочечную линейную молеклул ДНК. Левое и правое плечи фага имеют все гены, необходимые для литического цикла (репликации, размножения). Средняя часть генома бактериофага λ (содержит гены, контролирующие лизогению, то есть его интеграцию в ДНК бактериальной клетки) не существенна для его размножения и составляет примерно 25 тысяч пар нуклеотидов. Данная часть может быть заменена на чужеродный фрагмент ДНК. Такие модифицированные фаги проходят литический цикл, но лизогения не происходит. Векторы на основе бактериофага λ используют для клонирования фрагментов ДНК эукариот (то есть более крупных генов) размером до 23 т.п.н. Причем, фаги без вставок - менее 38 т.п.н или, напротив, со слишком большими вставками - более 52 т.п.н не развиваются и не поражают бактерии .

В биологии

Поскольку размножение бактериофага возможно только в живых клетках бактериофаги могут быть использованы для определения жизнеспособности бактерий. Данное направление имеет большие перспективы, поскольку, одним из основных вопросов при разных биотехнологических процессах является определение жизнеспособности используемых культур. С помощью метода электрооптического анализа клеточных суспензий была показана возможность изучения этапов взаимодействия фаг-микробная клетка .

Ссылки

  1. Вирусы бактерий
  2. Бактериофаг
  3. Ackermann H.-W. // Res. Microbiol., 2003. - V. 154. - P. 245-251
  4. Hendrix R.W. // Theor. Popul. Biol., 2002. - V. 61. - P. 471-480
  5. Suttle C.A. (September 2005), Vuiruses in the sea. Nature 437:356-361.
  6. Шестаков С. В. Как происходит и чем лимитируется горизонтальный перенос генов у бактерий. Экологическая генетика 2007. - Т. 5. - № 2. - C. 12-24.
  7. Tettelin H., Masignani V., Cieslewicz M. J., Donati C., Medini D., Ward N. L., Angiuoli S. V., Crabtree J., Jones A. L., Durkin A. S., Deboy R. T., Davidsen T. M., Mora M., Scarselli M., Margarit y Ros I., Peterson J. D., Hauser C. R., Sundaram J. P., Nelson W. C., Madupu R., Brinkac L. M., Dodson R. J., Rosovitz M. J., Sullivan S. A., Daugherty S. C., Haft D. H., Selengut J., Gwinn M. L., Zhou L., Zafar N., Khouri H., Radune D., Dimitrov G., Watkins K., O’Connor K. J., Smith S., Utterback T. R., White O., Rubens C. E., Grandi G., Madoff L. C., Kasper D. L., Telford J. L.,. Wessels M. R, Rappuoli R., Fraser C. M. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial «pan-genome.» Proc. Natl. Acad. Sci. USA 2005. 102: 13950-13955
  8. Guttman B., Raya R., Kutter E. Basic Phage Biology, in Bacteriophages: Biology and Applications, (Kutter E. and Sulakvelidze A., ed.), CRP Press, 2005 FL. - Р.29-66.
  9. Ковалева Е. Н. Создание биопрепарата на основе выделенных и изученных бактериофагов Enterococcus faecalis: Дис. … канд. биол. наук. - Саратов, 2009. - 151 с
  10. Ackermann H.-W. // Res. Microbiol., 2003. - V. 154. - P. 245-251.
  11. Ожерельева Н. Г. Краткая Медицинская Энциклопедия, М.: изд-во «Советская Энциклопедия», 1989. - издание второе.
  12. Русалеев В. С., Таксономия вирусов бактерий / В. С. Русалеев // Ветеринария. - 1990. - № 12. - C. 25-28.
  13. Virus Taxonomy. Classification and Nomenclature of Viruses. Seventh Report of the International Committee on Taxonomy of Viruses / Edited by M.H.V. van Regenmontel et al. - San Diego: Academic Press, 2000. - P. 43-53, 64-129.
  14. Raya R.R., Hébert E.M. Isolation of phage via induction of lysogens. Bacteriophages: Methods and Protocols, Volume 1: Isolation, Characterization, and Interaction (Martha R.J. Clokie, Andrew M. Kropinski (eds.), 2009. - V. 501. - P. 23-32.
  15. Микробиология: учеб. пособие / В. В. Лысак. - Минск: БГУ, 2007. - 430 с.
  16. Адамс М., Бактериофаги / М. Адамс. - М.:Медгиз, 1961. - 521 с.
  17. Гольдфарб Д. М., Бактериофагия / Д. М. Гольдфарб. - М.: Медгиз, 1961. - 299 с.
  18. Щелкунов С. Н. Генетическая инженерия / С. Н. Щелкунов. - Новосибирск: Сиб. унив. изд-во, 2004. - 496 с.
  19. Guliy O.I., Bunin V.D., O’Neil D., Ivnitski D., Ignatov O.V. A new electro-optical approach to rapid assay of cell viability // Biosensors and Bioelectronics. 2007. V. 23. P. 583-587.

Фаги атакуют
Отечественная история производства и применения бактериофагов

В нашей стране бактериофаги для нужд медицины производятся и применяются уже почти 80 лет: еще во время Великой Отечественной войны с их помощью удалось спасти жизнь тысячам раненых и предотвратить эпидемию холеры в осажденном Сталинграде перед знаменитой Сталинградской битвой. Появление и широкое распространение антибиотиков практически свело «на нет» производство бактериофагов в мире, поэтому в течение десятилетий СССР оставался единственной страной, где технологии производства фаговых препаратов не только продолжали развиваться, но были поставлены на промышленную основу.

И сегодня Россия остается мировым лидером по выпуску и терапевтическому применению этих эффективных и безопасных антибактериальных средств

Благодаря сотрудничеству двух великих ученых-микробиологов – француза Феликса д’ Эрелля и грузина Георгия Элиавы – в СССР в 1920-х гг. был создан первый и единственный в мире научно-исследовательский центр бактериофагологии. Несмотря на репрессии, в результате которых его первый директор Г. Г. Элиава был расстрелян, а часть сотрудников отправлены в ссылку, тбилисский Институт бактериофагов выстоял и продолжил свою работу, став ведущим мировым центром терапевтических исследований и производства этих бактериальных «киллеров».

Бактериофаги советского производства были впервые массово использованы в экстренных ситуациях, вызванных вспышками бактериальных инфекций в конце 1930-х гг. Так, в 1938 г. в нескольких районах Афганистана, граничащих с территорией СССР, разразилась эпидемия холеры. Чтобы предупредить распространение этого тяжелейшего бактериального заболевания, было решено использовать на пограничных территориях холерный бактериофаг. Фаговый препарат давали местному населению, добавляли в колодцы и водоемы. В итоге на советской территории не было зарегистрировано ни одного случая заболевания холерой.

«Массовое изготовление бактериофага для практических целей требует чрезвычайно большого внимания, тщательности и глубокой теоретической подготовки со стороны бактериолога, организующего данное производство. Выделенные бактериофаги необходимо тщательно изучить, прежде чем пустить в производство. Терапевтическое значение могут иметь только активные бактериофаги, удваивающие число корпускул приблизительно за 10 минут, что является критерием высокой вирулентности данной расы бактериофага. Бактериофаг должен растворять подавляющее большинство штаммов бактерий данного вида, выделенных из самых разнообразных источников и из различных местностей.
Бактериофаг должен обладать хорошей жизнеспособностью. Его необходимо выращивать на свежевыделенных из организма бактериальных штаммах, наименьшее число раз перевитых на искусственных питательных средах....


В 1896 г. русский Владимир Ааронович Хавкин обнаружил антимикробную активность водных образцов из рек Индии. Эти препараты, предварительно пропущенные через бактериальные фильтры, ингибировали рост культуры холерного вибриона .

В 1898 г. русский Н.Ф. Гамалея наблюдал растворение культуры возбудителя сибирской язвы под действием фильтрата этого микроорганизма и назвали его (фильтрат) бактериолизином.

В 1915 г. англичанин Эдвард Творт описал агент, проходящий через бактериальный фильтр и вызывающий лизис стафилококков .

В 1917 г. француз Феликс Д"Эррель – обнаружил феномен литического действия фильтрата испражнений переболевшего дизентерией , что выразилось в просветлении бульонной культуры и образовании «стерильных пятен» на агаровой культуре возбудителя. Он назвал это явлениебактериофагией , а литический агент, способный размножаться на гомологичных бактериях, -бактериофагом (от лат. phagos - пожираюший бактерии). В книге "Бактериофаги" (1922) Д"Эррель рассмотрел природу фага, методы его выделения. Вся его дальнейшая деятельность была посвящена изучению бактериофагов, их использованию в лечении инфекционных заболеваний -фаготерапии .

В настоящее время бактериофаги применяют в медицине для диагностики, лечения и профилактики инфекционных заболеваний.

Владимир Ааронович Хавкин

(15.03 1860, Одесса, Россия, - 26.10.1930, Лозанна, Швейцария), бактериолог

Никола́й Фёдорович Гамалея

(5 (17) февраля 1859 , Одесса - 29 марта 1949 , Москва ), советский микробиолог, эпидемиолог

Фредерик Туорт (22.10.1877, Камберли, Англия, - 20.03.1950,

там же), английский микробиолог.

Феликс Д"Эрелль (25.04.1873, Монреаль, - 22.02.1949, Париж), бактериолог.

Специфичность взаимодействия фагов с бактериями .

Для бактериофагов характерна строгая специфичность, что может выражаться в способности лизировать бактерии только одного вида - видовая специфичность, либо внутри вида – типовая специфичность. Если фаги лизируют бактерии близких видов, входящих в один род, например в род Shigella (возбудители дизентерии), то их называют поливалентными. Типовая специфичность применяется для типирования (фаготипирования) бактерий с целью выявления источника инфекции.

По конечному результату взаимодействия с клеткой все фаги можно разделить навирулентные иумеренные.

Типирование штаммов стафилококков

(Н.Р. Иванов, Л.М. Скитева, Н.С. Солун «Бактериологическая диагностика и профилактика стафилококковых заболеваний»

Культура засевается в бульон (Хоттингера или Мартена), инкубируется три часа, а затем пересевается «газоном» на чашки с МПА, содержащим 0,025-0,04% хлористого кальция. Дно чашки предварительно разграфляют на квадраты, количество которых соответствует числу фагов.

Стандартный набор включает 21 фаг (80, 79, 52А, 52, 29, 71, 55, 3С, 3В, 3А, 53,47,42Е, 7, 6, 42Д, 77,75, 83А, 54, 81, 187.

Засеянные чашки подсушивают при температуре 37° в течение 30-40 минут, затем петлей наносят каплю соответствующего фага всегда в одном и том же порядке.

Если культур много, то чашки расставляют на столе (в боксе) и снимают крышки. Пастеровской пипеткой набирают первую, а затем очередную по порядку расу тест-фага и наносят небольшие капли на соответствующий квадрат в каждой чашке. При этом прикасаться к агару нельзя во избежание переноса исследуемых культур с одной чашки на другую. После -высыхания капель фагов чашки помещают в перевернутом положении на 5-6 часов в термостат (температура 37°) и до утра оставляют при комнатной температуре. Учет результатов производят простым глазом и при помощи лупы, отмечая номер фага, давшего лизис на + + и выше, а в скобках отмечают номер фага, давшего лизис на +.

Эта статья, словно доклад по биологии для 5 класса о вирусах бактериофагах, поможет читателю узнать основную информацию о данных внеклеточных формах жизни. Здесь мы рассмотрим их таксономическое расположение, особенности строения и жизнедеятельности, проявлении себя при взаимодействии с бактериями и т. д.

Введение

Всем известно, что универсальным представителем единицы жизни на планете Земля является клетка. Однако рубеж между девятнадцатым и двадцатым веками стал эпохой, во время которой был открыт целый ряд болезней, поражающих животных, растения и даже грибы. Анализируя данное явление и учитывая общую информацию о заболеваниях человека, ученые поняли, что существуют организмы, которые могут иметь природу неклеточного характера.

Такие существа имеют чрезвычайно малые размеры, а потому способны проходить сквозь мельчайший фильтр, не задерживаясь при этом там, где даже самая маленькая клетка могла бы остановиться. Это обусловило открытие вирусов.

Общие данные

Прежде чем рассмотреть представителей вирусов - бактериофагов, - ознакомимся с общими сведениями о данном царстве таксономической иерархии.

ДНК (РНК), принадлежащая вирусу, попав внутрь клетки-носителя, начинает взаимодействовать с наследственности так, что сама клетка начинает неконтролируемый процесс синтеза специфического ряда белков, зашифрованных в нуклеиновой кислоте самого возбудителя болезни. Далее происходит репликация, выполняемая непосредственно уже самой клеткой, и таким образом начинается процесс сборки новой вирусной частички.

Бактериофаг

Кто такие вирусы бактериофаги? Это особая форма жизни на Земле, которая избирательно проникает в клетки бактерий. Размножение чаще всего происходит внутри носителя, а сам процесс приводит к лизису. Рассматривая строение вирусов на примере бактериофагов, можно заключить, что они состоят из оболочек, образованных белками, и имеют аппарат по воспроизведению наследственности в виде одной цепочки РНК или двух цепей ДНК. Общее значение числа бактериофагов приблизительно соответствует всей численности бактериальных организмов. Данные вирусы принимают активное участие в химическом обороте веществ и энергии в природе. Обуславливают множество проявлений признаков у бактерий и микробов, развитых или развивающихся в ходе эволюции.

История открытия

Исследователь бактериологии Ф. Туорт создал описание инфекционного заболевания, которое предложил в статье, выпущенной в 1915 году. Данная болезнь поражала стафилококки и могла проходить сквозь любые фильтры, а также могла транспортироваться из одной колонии клеток в другие.

Микробиолог родом из Канады Ф. Д"Эрелль совершил открытие бактериофагов в сентябре 1917 года. Их обнаружение было сделано независимо от трудов Ф. Туорота.

В 1897 г. Н. Ф. Гамалея стал наблюдателем явления лизиса бактерии, который протекал под воздействием процесса прививки агента.

Значение

Строение вирусов на примере бактериофага может нам о многом сказать, особенно для взаимодействия с другой информацией, которой располагает о них человек. Например, они являются, предположительно, самой древней формой вирусных частиц. Количественный анализ указывает нам на то, что их популяция имеет более 10 30 частиц.

В природе их можно обнаружить там же, где обитают и бактерии, к которым они могут проявлять чувствительность. Так как рассматриваемые организмы определяются по месту обитания, предпочтениями бактерий, которых они поражают, то, следовательно, лизирующие почвенных бактерий (фаги) будут жить в почве. Чем больше в субстрате содержится микроорганизмов, тем больше там и необходимых фагов.

В действительности каждый бактериофаг воплощает в себе одну из основных элементных единиц генетической подвижности. Используя трансдукцию, они обуславливают возникновение новых генов в наследственном материале бактерии. За секунду может произойти инфицирование около 10 24 бактериальных клеток. Такая форма ответа на вопрос о том, какие вирусы называются бактериофагами, открыто показывает нам способы распределения наследственной информации, происходящие между бактериальными организмами из общей среды обитания.

Особенности строения

Отвечая на вопрос, какое строение имеет вирус бактериофаг, можно заключить, что их можно различать в соответствии с химической структурой, по виду нуклеиновой кислоты (н. к.), морфологическим данным и форме взаимодействия с бактериальными организмами. Величина такого организма может быть в несколько тысяч раз меньше самой микробной клетки. Типичный представитель фагов образован головкой и хвостом. Длина хвостового отдела может в два-четыре раза превышать величину диаметра головки, в которой, кстати говоря, располагается генетический потенциал, принявший форму цепи ДНК или РНК. Здесь также находится фермент - транскриптаза, погруженный в неактивное состояние и окруженный оболочкой из белков или липопротеинов. Она обуславливает хранение генома внутри клетки и называется капсидом.

Особенности строения вируса бактериофага определяют его хвостовой отсек как трубку из белков, которая служит продолжением оболочки, составляющей головку. В области хвостового основания располагается АТФаза, регенерирующая энергетические ресурсы, расходуемые на процесс инъекции генетического материала.

Систематические данные

Бактериофаг - это поражающий бактерии вирус. Именно так его классифицирует систематика в таблице иерархического порядка. Присвоение им звания в этой науке было обусловлено обнаружением огромного количества данных организмов. В настоящее время эти вопросы решает МКТВ (ICTV). В соответствии с Международными стандартами классификации и распределением таксонов среди вирусов, бактериофаги различают по типу содержащейся в них нуклеиновой кислоты или морфологическим особенностям.

На сегодня можно выделить 20 семейств, среди которых лишь 2 принадлежит к содержащим РНК и 5 с наличием оболочки. Среди ДНК-вирусов лишь у 2 семейств имеется одноцепочечная форма генома. 9 (геном представляется нам в виде кольцевой молекулы дезоксирибонуклеиновой кислоты) и другие 9 с линейной фигурой. 9 семейств являются специфичными по отношению к бактериям, а другие 9 - к археям.

Влияние на бактериальную клетку

Вирусы бактериофаги, в зависимости от характера взаимодействия с клеткой бактерии, могут различаться на фаги вирулентного и умеренного типа. Первые способны увеличивать свое количество лишь при помощи литических циклов. Процессы, при которых происходит взаимодействие вирулентного фага и клетки, состоит из адсорбции на клеточной поверхности, внедрения в клеточную структуру, процессов по биосинтезу элементов фагов и их приведению в функциональное состояние, а также выход бактериофага за пределы хозяина.

Рассмотрим описание вирусов бактериофагов, опираясь на их дальнейшее воздействие в клетке.

Бактерии имеют на своей поверхности особые фагоспецифические структуры, представленные в виде рецепторов, к которым, собственно, и крепится бактериофаг. Используя хвост, фаг посредством ферментов, содержащихся на его завершении, разрушает оболочку в определенной локации клетки. Далее происходит его сокращение, вследствие которого ДНК вводится внутрь клетки. «Тело» вируса-бактериофага своей белковой оболочкой остается снаружи.

Инъекция, совершенная фагом, вызывает полное перестроение всех метаболических процессов. Синтез бактериальных белков, а также РНК и ДНК, завершается, а сам бактериофаг начинает процесс транскрибирования благодаря деятельности личного фермента, называемого транскриптазой, который активируется лишь после проникновения в клетку бактерии.

Как ранние, так и поздние цепи информационной РНК синтезируются после поступления их на рибосому клетки-носителя. Там же происходит процесс синтеза таких структур, как нуклеаза, АТФаза, лизоцим, капсид, отросток хвоста и даже ДНК-полимераза. Процесс репликации протекает в соответствие с полуконсервативным механизмом и осуществляется лишь при наличии полимеразы. Поздние белки образуются после завершения процессов по репликации дезоксирибонуклеиновой кислоты. После этого начинается финальная стадия цикла, в котором происходит фаговое созревание. А также может происходить объединение с белковой оболочкой и образование зрелых частичек, готовых к инфицированию.

Циклы жизни

Вне зависимости от строения вируса бактериофага, все они имеют общую характеристику жизненных циклов. В соответствии с умеренностью или вирулентностью оба типа организмов схожи друг с другом в начальных стадиях влияния на клетку с одинаковым циклом:

  • процесс адсорбции фага на особом рецепторе;
  • введение инъекции нуклеиновых кислот в жертву;
  • стартует совместный процесс репликации нуклеиновых кислот, как фага, так и бактерии;
  • процесс клеточного деления;
  • развитие лизогенным или литическим путем.

Умеренный бактериофаг сохраняет режим профага, следует лизогенному пути. Вирулентные представители развиваются в соответствие с литической моделью, в которой имеется ряд последовательных процессов:

Вирусы бактериофаги находят свое широкое применение в терапии антибактериального типа, которая служит альтернативой антибиотикам. Среди организмов, которые могут быть применимы, чаще всего выделяют: стрептококковых, стафилококковых, клебсиеллезных, коли, протейных, пиобактериофагов, полипротейновых и дизентерийных.

На территории РФ в медицинских целях зарегистрировано и применимо на практике тринадцать медикаментозных веществ, основанных на фагах. Как правило, такие способы борьбы с инфекциями применяются в том случае, когда традиционная форма лечения не приводит к значительным изменениям, что обуславливается слабой чувствительностью возбудителя к самому антибиотику или полному сопротивлению. На практике использование бактериофагов приводит к быстрому и качественному достижению желаемого успеха, но для этого необходимо присутствие биологической мембраны, укрытой слоем полисахаридов, сквозь которые антибиотикам проникнуть не удается.

Терапевтический тип применения представителей фагов не находит поддержания на Западе. Однако часто применяется для борьбы с бактериями, вызывающими пищевое отравление. Многолетние опыты по исследованию деятельности бактериофагов показывают нам, что наличие, например, в общем пространстве городов и сел обуславливает подвергание пространства профилактическим мерам.

Инженеры-генетики эксплуатируют бактериофагов, как векторы, при помощи которых осуществляется перенос участков ДНК. А также с их участием протекает передача геномной информации между взаимодействующими клетками бактерий.